SEMESTER 3

ELECTRONICS ENGINEERING

(VLSI Design and Technology)

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 3

Course Code	GYMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in complex numbers.	Course Type	Theory

(Common to B & C Groups)

Course Objectives:

- 1. To introduce the concept and applications of Fourier transforms in various engineering fields.
- **2.** To introduce the basic theory of functions of a complex variable, including residue integration and conformal transformation, and their applications

Module No.	Syllabus Description	Contact Hours
	Fourier Integral, From Fourier series to Fourier Integral, Fourier Cosine and	
	Sine integrals, Fourier Cosine and Sine Transform, Linearity, Transforms of	
1	Derivatives, Fourier Transform and its inverse, Linearity, Transforms of	9
	Derivative.	
	(Text 1: Relevant topics from sections 11.7, 11.8, 11.9)	
	Complex Function, Limit, Continuity, Derivative, Analytic functions,	
	Cauchy-Riemann Equations (without proof), Laplace's Equations, Harmonic	
2	functions, Finding harmonic conjugate, Conformal mapping, Mappings of	9
	$w = z^2$, $w = e^z$, $w = \frac{1}{z}$, $w = sinz$.	
	(Text 1: Relevant topics from sections 13.3, 13.4, 17.1, 17.2, 17.4)	
	Complex Integration: Line integrals in the complex plane (Definition &	
3	Basic properties), First evaluation method, Second evaluation method,	9
	Cauchy's integral theorem (without proof) on simply connected domain,	

	Independence of path, Cauchy integral theorem on multiply connected	
	domain (without proof), Cauchy Integral formula (without proof).	
	(Text 1: Relevant topics from sections 14.1, 14.2, 14.3)	
	Taylor series and Maclaurin series, Laurent series (without proof),	
	Singularities and Zeros – Isolated Singularity, Poles, Essential Singularities,	
	Removable singularities, Zeros of Analytic functions - Poles and Zeros,	
4	Formulas for Residues, Residue theorem (without proof), Residue	9
	Integration- Integral of Rational Functions of $cos\theta$ and $sin\theta$.	
	(Text 1: Relevant topics from sections 15.4, 16.1, 16.2, 16.3, 16.4)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering.	К3
CO2	Understand the analyticity of complex functions and apply it in conformal mapping.	К3
CO3	Compute complex integrals using Cauchy's integral theorem and Cauchy's integral formula.	К3
CO4	Understand the series expansion of complex function about a singularity and apply residue theorem to compute real integrals.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Complex Analysis	Dennis G. Zill, Patrick D. Shanahan	Jones & Bartlett	3 rd edition, 2015			
2	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			
3	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th edition, 2018			
4	Fast Fourier Transform - Algorithms and Applications	K.R. Rao, Do Nyeon Kim, Jae Jeong Hwang	Springer	1 st edition, 2011			

SOLID STATE DEVICES

Course Code	PCECT302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Physics of Electrical Science (GBPHT121)	Course Type	Theory

Course Objectives:

1. This course explains the physical processes and working principles of semiconductor devices, while relating the device performance to material parameters and design criteria.

Module No.	Syllabus Description	Contact Hours
	Review of Semiconductor physics: Equilibrium and steady state	
	conditions, Concept of effective mass and Fermi level, Density of	
	states & Effective density of states, Equilibrium concentration of	
	electrons and holes.	
	Excess carriers in semiconductors: Generation and recombination	
1	mechanisms of excess carriers, quasi-Fermi levels.	13
	Carrier transport in semiconductors: Drift, conductivity and	
	mobility, variation of mobility with temperature and doping, Hall	
	Effect. Diffusion, Einstein relations, Poisson equations, Continuity	
	equations, Current flow equations, Diffusion length, Gradient of quasi-	
	Fermi level.	
	PN junctions: Contact potential, Electrical Field, Potential and	
2	Charge distribution at the junction, Biasing and Energy band	l
	diagrams, Ideal diode equation.	12
	Bipolar junction transistor: Transistor action, Base width	

	modulation, Current components in a BJT, Derivation of current components.	
3	 Metal Semiconductor contacts: Electron affinity and work function, Ohmic and Rectifying Contacts, current voltage characteristics. Ideal MOS capacitor: band diagrams at equilibrium, accumulation, depletion and inversion, surface potential, CV characteristics, effects of real surfaces, threshold voltage, body effect. MOSFET- Drain current equation of enhancement type MOSFET (derivation)- linear and saturation region, Drain characteristics, 	11
4	 MOSFET scaling: Need for scaling, constant voltage scaling and constant field scaling. Sub- threshold conduction in MOS. Short channel effects in MOSFETs: Channel length modulation, Drain Induced Barrier Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects. MESFET and FinFET: Structure, operation and advantages. 	8

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Apply Fermi-Dirac statistics to compare equilibrium carrier concentration.	К3			
CO2	State different carrier transport mechanisms in extrinsic semiconductors and obtain the current densities due to this transport.	К3			
CO3	Apply the concept of semiconductor physics to solve the current components in semiconductor devices.	К3			
CO4	Analyze the response of semiconductor devices for different biasing conditions	К3			
CO5	Outline the effects of scaling in semiconductor devices.	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	2										
CO3	3	2										2
CO4	3	2	2									2
CO5	3	2	2									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Semiconductor Physics and Devices	Neamen	McGraw Hill	4/e, 2017				
2	Physics of Semiconductor Devices	Sze S.M	John Wiley	3/e, 2015				
3	SemiconductorDevices:Physics and Technology	Sze S.M	John Wiley	3/e, 2016				
4	Operation and Modelling of the MOS Transistor	Yannis Tsividis	Oxford University Press	3/e,2010				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://nptel.ac.in/courses/117106091					
2	https://nptel.ac.in/courses/117106091					
3	https://nptel.ac.in/courses/117106091					
4	https://nptel.ac.in/courses/117106091					

ANALOG CIRCUITS

Course Code	PCECT303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	BEE/(GYEST104)	Course Type	Theory

Course Objectives:

1. By the end of this course, students will be able to design and analyze various analog circuits, including wave shaping circuits, amplifiers, oscillators, and voltage regulators.

Module	Syllabus Description					
No.		Hours				
	Wave Shaping Circuits: RC differentiating and integrating circuits,					
	Analysis of First order RC low pass and high pass filter for step input -rise					
	time, band width.					
1	Diode Clipping and clamping circuits.	10				
	BJT/MOSFET Biasing: Need for biasing, DC load line, operating point,					
	BJT biasing (CE configuration)– fixed bias & voltage divider bias (Design &					
	analysis). MOSFET biasing,					
	BJT Amplifiers: Design of RC coupled CE amplifier - Small signal analysis					
	of CE amplifier using hybrid- π model (low and mid frequency'). The high-					
	frequency hybrid- π model of BJT, Miller effect, High frequency response					
	of single stage CE amplifier, short circuit current gain, cut-off frequency $f_\beta \&$					
	unity gain bandwidth f_T .					
2	MOSFET Amplifiers: Design of CS amplifier, Small signal analysis using	12				
	hybrid- π model (mid frequency only), Small signal voltage gain, input &					
	output impedance, CS stage with current source load and diode connected					
	load.					
	Multistage BJT Amplifiers: Types of multistage amplifiers, Effect of					
	cascading on gain and bandwidth.					

	Small signal voltage gain, input & output impedance of BJT cascode				
	amplifier using hybrid- π model.				
	Feedback amplifiers: The general feedback structure, Effect of negative				
	feedback on gain, bandwidth, noise reduction and distortion. The four basic				
	feedback topologies, Analysis of discrete BJT circuits in voltage-series and				
	voltage-shunt feedback topologies - voltage gain, input and output				
3	impedance.	11			
	Oscillators: Classification, criterion for oscillation, Wien bridge oscillator,				
	Hartley and Crystal oscillator. (working principle and design equations of the				
	circuits; analysis of Wien bridge oscillator only required).				
	Power amplifiers: Classification, Transformer coupled class A power				
	amplifier, push pull class B and class AB power amplifiers, complementary-				
	symmetry class B and Class AB power amplifiers, class C and D power				
4	amplifier - efficiency and distortion (no analysis required)	11			
	Linear Voltage Regulators: Types of voltage regulators- series and shunt -				
	working and design, load & line regulation, short circuit protection and fold				
	back protection.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Design wave shaping circuits using first order RC network and diodes.	К3			
CO2	Analyze single stage and multistage BJT amplifier circuits using equivalent models.	К3			
CO3	Apply the principles of feedback in the design of oscillators.	K3			
CO4	Design power amplifiers and voltage regulator circuits.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2							2
CO2	3	3			2							2
CO3	3	3	`2		2							2
CO4	3	3	2		2							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s									
1	Electronic Devices and Circuit Theory.	Robert Boylestad and L Nashelsky	Pearson	11th edition, 2015							
2	Microelectronic Circuits	Sedra A. S. and K. C. Smith,	Oxford University Press, 2013	6th edition, 2013							
3	Electronic Circuits and Devices	Theodore F. Bogart; Beasley, Jeffrey S.; Guillermo Rico	Pearson Education India	6th edition							

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Fundamentals of Microelectronics	Razavi B.	Wiley	2nd edition, 2015							
2	Electronic Devices and Circuits	David A Bell	Oxford University Press	5th edition, 2008							
3	Electronic Circuits Analysis and Design 1	D. Meganathan	Yes Dee Publishing	1 st edition, 2023							
4	Analysis and Design of Electronic Circuits	K. Gopakumar	OWL Books	1 st edition, 2023							

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://archive.nptel.ac.in/courses/108/106/108106188/							
2	https://archive.nptel.ac.in/courses/108/106/108106188/							
3	https://archive.nptel.ac.in/courses/108/106/108106188/							

LOGIC CIRCUIT DESIGN

(Common to EC and AE Branches)

Course Code	PBECT304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST104 Introduction to Electrical & Electronics Engineering	Course Type	Theory

Course Objectives:

- 1. To understand the number systems in digital systems.
- 2. To introduce the basic postulates of Boolean algebra, digital logic gates and Boolean expressions
- 3. To design and implement combinational and sequential circuits.
- **4.** To design and implement digital circuits using Hardware Descriptive Language like Verilog on FPGA.

SYLL	ABUS
------	------

Module No.	Syllabus Description	Contact Hours
1	 Introduction to digital circuits: Review of number systems representation- conversions, Arithmetic of Binary number systems, Signed and unsigned numbers, BCD. Boolean algebra: Theorems, sum of product and product of sum - simplification, canonical forms- min term and max term, Simplification of Boolean expressions - Karnaugh map (upto 4 variables), Implementation of Boolean expressions using universal gates. 	9
2	Combinational logic circuits- Half adder and Full adders, Subtractors, BCD adder, Ripple carry and carry look ahead adders, Decoders, Encoders, Code converters, Comparators, Parity generator, Multiplexers, De-multiplexers, Implementation of Boolean algebra using MUX. Introduction to Verilog HDL – Basic language elements, Basic implementation of logic gates and combinational circuits.	9

3	Sequential Circuits: SR Latch, Flip flops - SR, JK, Master-Slave JK, D and T Flip flops. Conversion of Flip flops, Excitation table and characteristic equation. Shift registers-SIPO, SISO, PISO, PIPO and Universal shift registers. Ring and Johnsons counters. Design of Asynchronous, Synchronous and Mod N counters.	9
4	 Finite state machines - Mealy and Moore models, State graphs, State assignment, State table, State reduction. Logic Families: -Electrical characteristics of logic gates (Noise margin, Fanin, Fan-out, Propagation delay, Transition time, Power -delay product) -TTL, ECL, CMOS. Circuit description and working of TTL and CMOS inverter, CMOS NAND and CMOS NOR gates. 	9

Suggestion on Project Topics

- A random sequence generator
- Traffic light controller
- Multiplexer based person priority check in system at airport
- Waveform generator
- Object/Visitor counter
- Fast adders
- Hamming code-based parity checker
- Arithmetic Logic Unit using FPGA

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	30	12.5	12.5	60	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 6 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 2 marks	• Each question can have a maximum of 2 sub	40
	divisions.	
(8x2 =16marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the knowledge of digital representation of information and Boolean algebra to deduce optimal digital circuits.	К3
CO2	Design and implement combinational logic circuits, sequential logic circuits and finite state machines.	K5
СО3	Design and implement digital circuits on FPGA using hardware description language (HDL).	K5
CO4	Outline the performance of logic families with respect to different parameters.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2								3
CO2	3	3	3	3	3	3	3	3	3			3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3		2									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
SL No	Title of the Book	Name of the Author/s	Name of the	Edition				
			Publisher	and Year				
	Digital Fundamentals			11 th				
1	Digital Fundamentals	Thomas L. Floyd	Pearson Education	and Year 11 th Edition, 2017 2 nd Edition				
				2017				
2	Fundamentals of Digital Logic	Stanlar Drawn	McGraw Hill	2nd Edition				
2	with Verilog Design	Stephen Brown	Education	2 Edition				
2	Europeantals of Logia Design	Doth C II	Jaico Publishers. V	6 th Edition,				
5	Fundamentals of Logic Design	кош С.п	Ed., 2009.	2009				
1	Madam digital Electropics	D.D. Join	Tata McGraw Hill,	4 th Edition,				
4	Modern digital Electronics	K.P. Jain	2009	2009				

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D. Ciletti	Pearson India	6 th Edition, 2018					
2	Fundamentals of Digital Circuits	A. Ananthakumar	PHI	4 th Edition, 2016					
3	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer	2 nd Edition, 2019					
4	Digital Design Verilog HDL and Fundamentals	Joseph Cavanagh	CRC Press	1 st Edition, 2008					
5	Digital Circuits and Systems	D.V. Hall	Tata McGraw Hill	1989					

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/					
2	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/					
3	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/					
4	https://archive.nptel.ac.in/courses/117/106/117106086/ https://archive.nptel.ac.in/courses/106/105/106105185/					

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation / Video Presentation: Students present their results in a 2 to 5 minutes video			

PBL Course Elements

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for			
1	Project Planning and Proposal	5		
2	Contribution in Progress Presentations and Question Answer Sessions	4		
3	Involvement in the project work and Team Work	3		
4	Execution and Implementation	10		
5	Final Presentations	5		
6	6 Project Quality, Innovation and Creativity			
	Total	30		

Project Assessment and Evaluation criteria (30 Marks)

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

• Active participation and individual contribution

• Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Course Code	GNEST305	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- 2. Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

Module No.	Syllabus Description	Contact Hours
	Introduction to AI and Machine Learning: Basics of Machine Learning -	
1	types of Machine Learning systems-challenges in ML- Supervised learning	
	model example- regression models- Classification model example- Logistic	
	regression-unsupervised model example- K-means clustering. Artificial	
	Neural Network- Perceptron- Universal Approximation Theorem (statement	
	only)- Multi-Layer Perceptron- Deep Neural Network- demonstration of	
	regression and classification problems using MLP.(Text-2)	
	Mathematical Foundations of AI and Data science: Role of linear algebra	
2	in Data representation and analysis - Matrix decomposition- Singular Value	
	Decomposition (SVD)- Spectral decomposition- Dimensionality reduction	
	technique-Principal Component Analysis (PCA). (Text-1)	
	Applied Probability and Statistics for AI and Data Science: Basics of	
3	probability-random variables and statistical measures - rules in probability-	11

	Bayes theorem and its applications- statistical estimation-Maximum							
	Likelihood Estimator (MLE) - statistical summaries- Correlation analysis- linear correlation (direct problems only)- regression analysis- linear							
	regression (using least square method) (Text book 4)	1						
	Basics of Data Science: Benefits of data science-use of statistics and							
	Machine Learning in Data Science- data science process - applications of							
	Machine Learning in Data Science- modelling process- demonstration of	of						
4	4 ML applications in data science- Big Data and Data Science. (For							
	visualization the software tools like Tableau, PowerBI, R or Python can be	11						
	used. For Machine Learning implementation, Python, MATLAB or R can							
	be used.)(Text book-5)							
1								

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for engineering applications.	K3
CO2	Apply advanced mathematical concepts such as matrix operations, singular values, and principal component analysis to analyze and solve engineering problems.	K3
CO3	Analyze and interpret data using statistical methods including descriptive statistics, correlation, and regression analysis to derive meaningful insights and make informed decisions.	K3
CO4	Integrate statistical approaches and machine learning techniques to ensure practically feasible solutions in engineering contexts.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								
CO5	3	3	3	3								

Text Books							
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year			
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley-Cambridge Press	6 th edition, 2023			
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media, Inc.	2 nd edition,202 2			
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020			
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020			
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1 st edition, 2016			

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018			
2	Probability and Statistics for Data Science	Carlos Fernandez- Granda	Center for Data Science in NYU	1 st edition, 2017			
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020			
4	Statistics For Data Science	James D. Miller	Packt Publishing	1 st edition, 2019			
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009			
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidn bmnnnibpcajpcgl clefindmkaj/https ://www.math.ariz o	Preliminary Edition.			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/106/106/106106198/			
2	https://archive.nptel.ac.in/courses/106/106/106106198/ https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular- value-decomposition/			
3	https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19- video/			
4	https://archive.nptel.ac.in/courses/106/106/106106198/			

SEMESTER S3/S4

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- **3.** Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal	6

	policies – Deflation	
	Taxation – Direct and Indirect taxes (merits and demerits) - GST	
	National income - Concepts - Circular Flow - Methods of Estimation and	
	Difficulties - Stock Market - Functions- Problems faced by the Indian stock	
	market-Demat Account and Trading Account - Stock market Indicators-	
	SENSEX and NIFTY	
	Value Analysis and value Engineering - Cost Value, Exchange Value, Use	
	Value, Esteem Value - Aims, Advantages and Application areas of Value	<i>.</i>
4	Engineering - Value Engineering Procedure - Break-even Analysis - Cost-	6
	Benefit Analysis - Capital Budgeting - Process planning	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/Case study / Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
Minimum 1 and Maximum	• 2 questions will be given from each module, out	
2 Questions from each	of which 1 question should be answered. Each	
module.	question can have a maximum of 2 sub	
• Total of 6 Questions, each	divisions. Each question carries 8 marks.	50
carrying 3 marks	(4x8 = 32 marks)	
(6x3 =18marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	К3
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015				
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	РНІ	1966				
3	Engineering Economics	R. Paneerselvam	PHI	2012				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition		
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011		
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002		
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001		

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description				
1	 Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, 	6			

	employment and everyday life, History of women in Science & Technology,			
	Gendered technologies & innovations, Ethical values and practices in			
	connection with gender - equity, diversity & gender justice, Gender policy			
	and women/transgender empowerment initiatives.			
	Introduction to Environmental Ethics: Definition, importance and			
	historical development of environmental ethics, key philosophical theories			
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering			
	Principles: Definition and scope, triple bottom line (economic, social and			
	environmental sustainability), life cycle analysis and sustainability metrics.			
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6		
	Importance of biodiversity and its conservation, Human impact on			
	ecosystems and biodiversity loss, An overview of various ecosystems in			
	Kerala/India, and its significance. Landscape and Urban Ecology:			
	Principles of landscape ecology, Urbanization and its environmental impact,			
	Sustainable urban planning and green infrastructure.			
	Hydrology and Water Management: Basics of hydrology and water cycle.			
	Water scarcity and pollution issues, Sustainable water management practices,			
	Environmental flow, disruptions and disasters. Zero Waste Concepts and			
	Practices: Definition of zero waste and its principles, Strategies for waste			
	reduction, reuse, reduce and recycling, Case studies of successful zero waste			
	initiatives. Circular Economy and Degrowth: Introduction to the circular			
3	economy model, Differences between linear and circular economies,	6		
	degrowth principles, Strategies for implementing circular economy practices	Ū		
	and degrowth principles in engineering. Mobility and Sustainable			
	Transportation: Impacts of transportation on the environment and climate,			
	Basic tenets of a Sustainable Transportation design, Sustainable urban			
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and			
	upcoming models of sustainable mobility solutions.			
	Renewable Energy and Sustainable Technologies: Overview of renewable			
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in			
	energy production and consumption, Challenges and opportunities in			
4	renewable energy adoption. Climate Change and Engineering Solutions:	6		
	Basics of climate change science, Impact of climate change on natural and			
	human systems, Kerala/India and the Climate crisis, Engineering solutions to			
	mitigate, adapt and build resilience to climate change. Environmental			

Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. **Case Studies and Future Directions:** Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/ Individ ual (G/I)	Mark s
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project (Detailed documentation	 a) Perform an Engineering Ethics Case Study analysis and prepare a report b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics 	G	8
	of the project, including methodologies, findings, and reflections)	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	,	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Whitbeck Cambridge University Press & Assessment				
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006			
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023			
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019			
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012			
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.			
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014			

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.

• Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala Module-IV
- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

ANALOG CIRCUITS LAB

Course Code	PCECL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Familiarise the students with the analog circuits design using discrete components.
- 2. Familiarise the students with simulation of basic analog circuits.

Expt. No.	Part A – List of Experiments using discrete components (Any <i>Six</i> experiments mandatory)					
1	RC Integrating and Differentiating Circuits – (Transient analysis with different inputs and frequency response)					
2	Diode Clipping and Clamping Circuits (Transient and transfer characteristics)					
3	CE amplifier – Design for a specific voltage gain and plot frequency response characteristics					
4	CS MOSFET amplifier - Design for a specific voltage gain and plot frequency response characteristics					
5	Cascaded amplifier (CE – CE) - Design for a specific voltage gain and plot frequency response characteristics					
6	Cascode amplifier - Design for a specific voltage gain and plot frequency response characteristics					
7	Feedback amplifiers (current series & voltage series) - Design for a specific voltage gain and plot frequency response characteristics					
8	RC oscillators – RC phase shift or wien bridge oscillator					
9	Power amplifiers (Transformer less) – Class B & Class AB					
10	Transistor series voltage regulator – Design for a specific output voltage with & without short circuit protection (plot load & line regulation characteristics).					
Expt. No.	Part B – Simulation Experiments (Any Six experiments mandatory) The experiments shall be conducted using Open-Source Tools such as QUCS, KiCad, LT SPICE, or variants of SPICE tools.					
1	RC Integrating and Differentiating Circuits – (Transient analysis with different inputs and frequency response)					
2	Diode Clipping and Clamping Circuits (Transient and transfer characteristics)					
3	CE amplifier – Design for a specific voltage gain and plot frequency response characteristics					

4	CS MOSFET amplifier - Design for a specific voltage gain and plot frequency response characteristics
5	Cascaded amplifier ($CE - CE$) - Design for a specific voltage gain and plot frequency response characteristics
6	Cascode amplifier - Design for a specific voltage gain and plot frequency response characteristics
7	Feedback amplifiers (current series & voltage series) - Design for a specific voltage gain and plot frequency response characteristics
8	RC oscillators – RC phase shift or wien bridge oscillator
9	Power amplifiers (Transformer less) – Class B & Class AB
10	Transistor series voltage regulator – Design for a specific output voltage with & without short circuit protection (plot load & line regulation characteristics).

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome				
CO1	Design and demonstrate the functioning of basic analog circuits using discrete components.	К3		
CO2	Design and simulate the functioning of basic analog circuits using simulation tools.	K3		
CO3	Conduct troubleshooting of a given circuit and to analyze it	K3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2						3			3
CO2	3	2	2		3				3			3
CO3	3	2	2						3			3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Electronic Devices and Circuits	David A Bell	Oxford University Press, 2008	5th edition					
2	Electronic Circuits Analysis and Design 1	D. Meganathan	Yes Dee Publishing, 2023	1 st edition					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.
2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

Course Code	PCECL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

LOGIC CIRCUIT DESIGN LABORATORY

Course Objectives:

- 1. Familiarise the students with the Digital Logic Design through the implementation of Logic Circuits .
- 2. Familiarise the students with the HDL based Digital Design and FPGA boards.

Expt. No.	Part A – List of Experiments using digital components (Any Six experiments mandatory)
1	Realization of functions using basic and universal gates (SOP and POS forms).
2	Design and Realization of half/full adder and subtractor using basic gates and universal gates.
3	4 bit adder/subtractor and BCD adder using 7483
4	Study of Flip Flops : S-R, D, T, JK and Master slave JK FF using NAND gates
5	Asynchronous Counter: 3 bit up/down counter, Realization of Mod N Counter
6	Synchronous Counter: Realization of 4-bit up/down counter, Realization of Mod-N counters
7	Ring counter and Johnson Counter.
8	Realization of counters using IC's (7490, 7492, 7493).
9	Realization of combinational circuits using MUX & DEMUX, using ICs (74150, 74154)
10	Sequence Generator / Detector
Expt.	Part B – Simulation Experiments (Any Six experiments mandatory)
No.	The experiments shall be conducted using Verilog and implementation using small FPGA
	Realization of Logic Gates and Familiarization of FPGAs
1	(a) Familiarization of a small FPGA board and its ports and interface.
	(b) Create the .pcf files for your FPGA board.
	(c) Familiarization of the basic syntax of verilog

	(d) Development of verilog modules for basic gates, synthesis and implementation in
	the above FPGA to verify the truth tables.
	(e) Verify the universality and non associativity of NAND and NOR gates by uploading
	The corresponding verilog files to the FPGA boards.
	Adders in Verilog
2	(a) Development of verilog modules for half adder in any of the 3 modeling styles
	(b) Development of verilog modules for full adder in structural modeling using half adder.
	Mux and Demux in Verilog
3	(a) Development of verilog modules for a 4x1 MUX.
	(b) Development of verilog modules for a 1x4 DEMUX.
	Flipflops and coutners
4	(a) Development of verilog modules for SR, JK and D flipflops.
	(b) Development of verilog modules for a binary decade/Johnson/Ring counters
	Multiplexer and Logic Implementation in FPGA
5	(a) Make a gate level design of an 8 : 1 multiplexer, write to FPGA and test its
	functionality.
	(b) Use the above module to realize any logic function
	Flip-Flops and their Conversion in FPGA
6	(a) Make gate level designs of J-K, J-K master-slave, T and D flip-flops, implement and
	test them on the FPGA board.
	(b) Implement and test the conversions such as T to D, D to T, J-K to T and J-K to D
	Asynchronous and Synchronous Counters in FPGA
_	(a) Make a design of a 4-bit up down ripple counter using T-flip-flops in the previous
	experiment, implement and test them on the FPGA board.
	(b) Make a design of a 4-bit up down synchronous counter using T-flip-lops in the
	previous experiment, implement and test them on the FPGAboard.
	Universal Shift Register in FPGA
8	(a) Make a design of a 4-bit universal shift register using D-flip-flops in the previous
	experiment, implement and test them on the FPGA board.
	(b) Implement ring and Johnson counters with it.
	BCD to Seven Segment Decoder in FPGA
0	(a) Make a gate level design of a seven segment decoder, write to FPGA and test its
9	functionality.
	(b) Test it with switches and seven segment display. Use ouput ports for connection to the
	display.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and demonstrate the functioning of various combinational and sequential circuits using ICs	К3
CO2	Apply an industry compatible hardware description language to implement digital circuits	К3
CO3	Implement digital circuits on FPGA boards and connect external hardware to the boards	К3
CO4	Function effectively as an individual and in a team to accomplish the given task.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2					3			3
CO2	3	1	1	3	3				3	1		3
CO3	3	1	1	3	3				3	1		3
CO4	3	3	3		3				3			3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Verilog HDL Synthesis: A	I. Dhaaltan	B. S. Publications,				
	Practical Primer	. J. Bliasker	2001				
2	Fundamentals of Logic Design	Roth C.H	Jaico Publishers. V Ed., 2009	5th Edition			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Verilog HDL : A guide to digital design and synthesis	Palnitkar S.,	Prentice Hall; 2003.	2nd Edn.,			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4

ELECTRONICS ENGINEERING (VLSI Design and Technology)

MATHEMATICS FOR ELECTRICAL SCIENCE - 4

Course Code	GAMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus	Course Type	Theory

Course Objectives:

- 1. To familiarize students with the foundations of probabilistic and statistical analysis mostly used in varied applications in engineering and science.
- 2. To familiarize students with the basics of random processes essential for their subsequent study of analog and digital communication.

Module No.	Syllabus Description	Contact Hours
	Random variables, Discrete random variables and their probability	
	distributions, Cumulative distribution function, Expectation, Mean and	
	variance, Binomial distribution, Poisson distribution, Poisson distribution	
1	as a limit of the binomial distribution, Joint pmf of two discrete random	
	variables, Marginal pmf, Independent random variables, Expected value of	9
	a function of two discrete variables.	
	[Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	
	Continuous random variables and their probability distributions,	
	Cumulative distribution function, Expectation, Mean and variance,	
	Uniform, Normal and Exponential distributions, Joint pdf of two	
2	Continuous random variables, Marginal pdf, Independent random variables,	9
	Expectation value of a function of two continuous variables.	,
	[Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	

	Confidence Intervals, Confidence Level, Confidence Intervals and One-side confidence intervals for a Population Mean for large and small samples (normal distribution and t-distribution), Hypotheses and Test Procedures, Type I and Type II error, z Tests for Hypotheses about a Population Mean	
3	(for large sample), t Test for Hypotheses about a Population Mean (for small sample), Tests concerning a population proportion for large and small samples. [Text 1: Relevant topics from 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4]	9
4	Random process concept, classification of process, Methods of Description of Random process, Special classes, Average Values of Random Process, Stationarity- SSS, WSS, Autocorrelation functions and its properties, Ergodicity, Mean-Ergodic Process, Mean-Ergodic Theorem, Correlation Ergodic Process, Distribution Ergodic Process.	9
	[Text 2: Relevant topics from Chapter 6]	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Estimate population parameters, assess their certainty with confidence intervals, and test hypotheses about population means and proportions using z-tests and the one-sample t-test.	K3
C04	Analyze random processes by classifying them, describing their properties, utilizing autocorrelation functions, and understanding their applications in areas like signal processing and communication systems	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016
2	Probability, Statistics and Random Processes	T Veerarajan	The McGraw-Hill	3 rd edition,2008

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Probability, Random Variables and Stochastic Processes,	Papoulis, A. & Pillai, S.U.,	McGraw Hill.	4 th edition, 2002
2	Introduction to Probability and Statistics for Engineers and Scientists	Ross, S. M.	Elsevier	4 th edition, 2004
3	Probability and Random Processes	Palaniammal, S.	PHI Learning Private Limited	3 rd edition, 2015
4	Introduction to Probability	David F. Anderson, Timo, Benedek	Cambridge	2017

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/117/105/117105085/			
2	https://archive.nptel.ac.in/courses/117/105/117105085/			
4	https://archive.nptel.ac.in/courses/117/105/117105085/			

DIGITAL SYSTEM DESIGN

Course Code	PCEVT402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304 Logic Circuit Design	Course Type	Theory

Course Objectives:

- 1. To equip students with comprehensive knowledge and skills in designing, analysing, modelling, and optimizing clocked synchronous sequential networks (CSSNs).
- **2.** To provide a thorough understanding of the designing, analyzing, and optimizing techniques of asynchronous sequential circuits (ASCs).
- **3.** To equip students with the knowledge and skills to identify and mitigate static and dynamic hazards and to understand fault detection and testing methods.
- **4.** To provide students with a comprehensive understanding of the VLSI design flow and the application of VHDL constructs and coding for combinational and sequential circuits.

Module No.	Syllabus Description	Contact Hours
1	Clocked Synchronous Networks, Analysis of Clocked Synchronous Sequential Networks (CSSN), Modelling of CSSN, State assignment and reduction, Design of CSSN, ASM Chart and its realization.	11
2	Asynchronous Sequential Circuits, Analysis of Asynchronous Sequential Circuits (ASC), Flow table reduction, Races in ASC, State assignment problem and the transition table, Design of Asynchronous Sequential Circuits, Design of ALU.	11
3	Hazards – static and dynamic hazards in combinational networks, Essential Hazards, Design of Hazard free circuits, Data synchronizers, Mixed operating mode asynchronous circuits, Practical issues- clock skew and jitter, Synchronous and asynchronous inputs, Flip-Flops and	11

	Simple Flip-Flop Applications, switch debouncer.	
	Faults, Fault table method – path sensitization method – Boolean difference method, Kohavi algorithm, Automatic test pattern generation – Built in Self-Test (BIST)	
4	VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis, simulation.VHDL constructs and codes for combinational and sequential circuits.	11

Course Assessment Method (CIE: 40 mark , ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module,	
•	Total of 8 Questions,		out of which 1 question should be answered.	60
	each carrying 3 marks	•	Each question can have a maximum of 3 sub	60
	(8x3 =24marks)		divisions.	
			(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design, analyze, and model clocked synchronous sequential networks (CSSNs), optimize state assignment and reduction, and effectively utilize ASM charts for the realization of complex digital systems.	К3
CO2	Design and analyze asynchronous sequential circuits (ASCs), perform flow table reduction, address race conditions and state assignment problems, and design both ASCs and Arithmetic Logic Units (ALUs).	К3
CO3	Identify and mitigate static and dynamic hazards in combinational networks, design hazard-free circuits, address practical issues in digital systems and apply fault detection and testing methods.	K2
CO4	Understand the VLSI design flow, utilize various design entry methods, apply different VHDL modeling styles, and develop and simulate VHDL constructs for combinational and sequential circuits.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									
CO2	3	2	2									
CO3	3	1	2									
CO4	1	1	2	1	2							
CO5												

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Digital Principles & Design	Donald G Givone	McGraw Hill Education	2017					
2	Digital Design: Principles and Practices	John F Wakerly	Pearson India	4 th , 2008					
3	Digital Logic Applications and Design	John M Yarbrough	Cengage Learning India	1 ^{st,} 2006					
4	Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog	M.Morris Mano and Michel.D.Ciletti,	Pearson	6 th , 2017					

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Systems Testing and Testable Design	Melvin A. Breuer, Miron Abramovici, Arthur D. Friedman	Wiley-IEEE Press	1 st , 1994					
2	Logic Design Theory	Nripendra N. Biswas	Prentice Hall	1993					
3	Introduction to Digital Design Using Digilent FPGA Boards: Block Diagram / VHDL Examples	Richard E. Haskell Darrin M. Hanna	LBE Books- LLC	2019					
4	Digital Circuits and Logic Design	Samuel C. Lee	Prentice Hall India Learning Private Limited	1980					
5	Switching and Finite Automata Theory	Zvi Kohavi, Niraj K. Jha	CAMBRIDGE UNIVERSITY PRESS	3 rd 2009					
6	Digital System Design Using VHDL	Rishabh Anand	Khanna Publishing	1 st , 2013					
7	Digital System Design Using VHDL	Lizy Kurian John, Charles H. Roth	Cengage	1 st , 2012					

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://archive.nptel.ac.in/courses/117/106/117106086/							
2	https://archive.nptel.ac.in/courses/117/106/117106086/							
3	https://archive.nptel.ac.in/courses/108/105/108105132/ Lecture 15							
4	https://nptel.ac.in/courses/108106177							

LINEAR INTEGRATED CIRCUITS

Course Code	PCECT403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Analog Circuits (PCECT303)	Course Type	Theory

Course Objectives:

1. To develop skills to design and analyze circuits using operational amplifiers for various applications.

Module No.	Syllabus Description	Contact Hours				
	Differential Amplifiers: Differential amplifier configurations using BJT,					
	DC Analysis - transfer characteristics; AC analysis - differential and					
	common mode gains, CMRR, input and output resistance, voltage gain,					
	constant current bias, constant current source.					
	Concept of current mirror: two-transistor current mirror, Wilson and					
1	Widlar current mirrors.	11				
	Operational amplifiers (Op Amps): The 741 Op Amp, Block diagram,					
	Ideal Op Amp parameters, typical parameter values for 741, equivalent					
	circuit, open loop configurations, voltage transfer curve, frequency					
	response curve.					
	Op Amp with negative feedback: General concept of Voltage Series,					
	Voltage Shunt, Current Series and Current Shunt negative feedback, Op					
	Amp circuits with Voltage Series and Voltage Shunt feedback, Virtual					
	ground concept.					
2	Analysis of inverting and non-inverting amplifier for closed loop gain,					
	Input Resistance and Output Resistance.	11				
	Op Amp applications: Summer, Voltage Follower, Differential and					
	Instrumentation Amplifiers, Voltage to Current and Current to Voltage					
	converters, Integrator, Differentiator, Precision Rectifiers, Comparators,					

	Schmitt Triggers, Log and Antilog amplifiers.	
3	 Oscillators and Multivibrators: Phase Shift and Wien-bridge Oscillators, Triangular and Sawtooth waveform generators, Astable and Monostable multivibrators. Active filters: Comparison with passive filters, First and Second order Low pass, High pass, Band pass and Band Reject active filters, State Variable filters. Voltage Regulators: Fixed and Adjustable voltage regulators, IC 723 – Low voltage and High voltage configurations, Current boosting, Current limiting, Short circuit and Fold-back protection. 	11
4	 Timer and VCO: Timer IC 555 - Functional diagram, Astable and monostable operations, Basic concepts of Voltage Controlled Oscillator and application of VCO IC LM566. Phase Locked Loop: Basic building block, Operation, Closed loop analysis, Lock and capture range, Applications of PLL, PLL IC565. Data Converters: Digital to Analog converters, Specifications, Weighted resistor type and R-2R Ladder type. Analog to Digital Converters: Specifications, Flash type and Successive approximation type. 	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module,	
•	Total of 8 Questions,	out of which 1 question should be answered.	
	each carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the concepts of operational amplifiers and differential amplifier configurations	K2
CO2	Design operational amplifier circuits for various applications.	K3
CO3	Choose integrated circuit chips for various linear circuit applications.	K2
CO4	Implement various applications using specific integrated circuit chips	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2	3	3	2							2
CO3	3				2							2
CO4	3	2	2	2	2							2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Linear Integrated Circuits	Roy D. C. and S. B. Jain	New Age International	5/e, 2018			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Design with Operational Amplifiers and Analog Integrated Circuits	Sergio Franco	Tata McGraw Hill	3/e, 2017			
2	Op-Amps and Linear Integrated Circuits	Gayakwad R. A.	Prentice Hall	4/e, 2015			
3	Integrated Circuits	Botkar K. R.	Khanna Publishers	10/e, 2013			
4	Operational Amplifiers	C.G. Clayton	Butterworth & Company Publ. Ltd. Elsevier	5/e, 2005			
5	Operational Amplifiers & Linear Integrated Circuits	R.F. Coughlin & Fredrick Driscoll	PHI	6/e, 2000			
6	Operational Amplifiers & Linear ICs	David A. Bell	Oxford University Press	3/e, 2011			
7	Microelectronic Circuits	Sedra A. S. and K. C. Smith	C. Smith Oxford University Press				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/117101106					
2	https://nptel.ac.in/courses/117101106					
3	https://nptel.ac.in/courses/117101106					
4	https://nptel.ac.in/courses/117101106					

MICROCONTROLLERS & EMBEDDED SYSTEMS

Course Code	PBECT404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304-Logic Circuit Design	Course Type	Theory

Course Objectives:

- 1. To learn Microcontroller architecture and its programming
- 2. To learn Embedded system design to develop a product.

Module No.	Syllabus Description	Contact Hours
	Microcontroller Architecture - General internal architecture, Address	
	bus, Data bus, control bus.	
	The Microcontroller 8051: Features of 8051 microcontroller, Block	
1	diagram of 8051- program status word (PSW), accumulator, program	9
	counter. Memory organization - RAM & ROM, register banks and stack,	,
	Special Function Registers (SFRs), I/O port organization, Interrupts.	
	Instruction Set of 8051 & Addressing modes: Classification of	
	instruction set - Data transfer group, arithmetic group, logical group,	
2	branching group.	
	Addressing modes - Types. Accessing the data from internal and external	9
	memory.	
	Programming 8051 Using Assembly Language: Introduction to 8051	
	assembly language programming. Data types & directives, Concept of	
3	subroutine. Software delay programming.	9
	Programming 8051 Using Embedded C Language: Introduction to	
	embedded C – advantages.	
	Timer / Counter in 8051: Timer registers - Timer0, Timer1.	
4	Configuration of timer registers. Timer mode programming. Counter	9

mode.	
Serial Communication in 8051: Serial communication - modes and	
protocols, RS-232 pin configuration and connection. Serial port	
programming – transmitting and receiving.	
Programming the interrupts: Use external, timer and serial port	
interrupts. Interrupt priority settings.	

Suggestion on Project Topics

- 1. Interface any known ADC chip to 8051 uC. Read the variation in voltage from a potentiometer and display it on an LCD module.
- 2. Interface any known DAC chip to 8051 uC. Generate a Sine waveform of 1KHz at any port pin.
- **3.** DC motor interface for speed and direction control.
- 4. Stepper motor interface Unit step control, Rotation angle control, Speed control, Direction control
- 5. Read the Temperature sensor and display it on LCD.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5 30		12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 6 marks. (4x6 = 24 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Outline Architecture of Microcontroller	K2			
CO2	Develop Microcontroller programs	К5			
CO3	Design various interfaces to Microcontroller	К5			
CO4	Design and implement an Embedded System	K6			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3	3	2	3			2				2
CO3	3	3	3	3	3			2				2
CO4	3	3	3	3	3	3	3	3	3	3	3	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	The 8051 Microcontroller and	Muhammad Ali Mazidi		Second			
1	Embedded Systems Using	Janice Gillispie Mazidi	Prentice Hall -Inc	2007			
	Assembly and C	Rolin D. McKinlay		2007			
	The 8051 Microcontroller	Kenneth J Ayala					
2	Architecture, Programming and	Dhananjay V Gadre	Cengage Learning	2010			
	Applications						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	8051 hardware Description	Datasheet	Intel Corporation	1992			
2	Microprocessors and Microcontrollers	Lyla B. Das	Pearson Education	2011			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	Microprocessors and Microcontrollers - https://nptel.ac.in/courses/106108100						
2	Microcontrollers and Applications - https://nptel.ac.in/courses/117104072						

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. **Project Planning and Proposal (5 Marks)**

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. **Final Presentation (5 Marks)**

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. **Project Quality, Innovation, and Creativity (3 Marks)**

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

ELECTROMAGNETIC WAVES

Course Code	PEEVT411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Probability, Random Process and Numerical Methods GBMAT401	Course Type	Theory

Course Objectives:

1. To analyse different analog and digital communication systems.

Module No.	Syllabus Description	Contact Hours
	Block diagram of a communication system. Need for modulation.	
	Amplitude modulation, Equation and spectrum of AM signal, DSB-SC,	
	SSB -pilot carrier and Vestigial sideband systems.	
	Angle modulation: Narrow and wide band FM and their spectra,	
1	relationship between FM and PM, Carson's rule, pre-emphasis and de-	
	emphasis filtering. Comparison of AM and FM.	12
	Superheterodyne receivers- Characteristics of receivers -image	
	frequency.	
	Noise: external, internal, White noise.	
	Sampling and Quantization, SQNR for uniform quantization, Companding	
2	Pulse code modulation, Transmitter and receiver. DPCM transmitter and	
	receiver.Delta modulation, Slope overload, Line codes.	10
	Baseband data transmission of digital data through AWGN channel,	
	Mathematical model of ISI, Nyquist criterion for zero ISI, Signal	
	modelling for ISI, Raised cosine spectrum, Equalization. Geometric	
3	representation of Signals-Gram-Schmitt procedure, Signal space. Vector	12
	model of AWGN channel. Matched filter and correlation receivers, MAP	
	receiver, Maximum likelihood receiver.	

4	Digital band pass modulation schemes-BPSK system and signal	
	constellation. BPSK transmitter and receiver. QPSK system and Signal	
	constellations. Plots of BER Vs SNR with analysis. QPSK transmitter and	10
	receiver. Quadrature amplitude modulation and signalconstellation.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	60
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the principles of analog communication systems	K2
CO2	Explain the basic concepts of digital communication	K2
CO3	Analyse the baseband transmission of digital data through AWGN channel	К3
CO4	Apply various digital modulation techniques in the design of digital communication systems	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	3	-	-	-	2	-	-	-	-	-	-	-
CO3	3	3	3	3	2	-	-	-	-	-	-	2
CO4	3	3	3	3	2	-	-	-	-	-	-	2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Communication Systems	Simon Haykin and Michael Moher	Wiley	5th Edition, 2020					
2	Modern Digital and Analog Communication Systems	B.P. Lathi and Zhi Ding	Oxford University Press	5th Edition, 2018					
3	Introduction to Analog and Digital Communication	Simon Haykin and Michael Moher	Wiley	2nd Edition, 2006					

	Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s							
1	Principles of Communication Systems	Herbert Taub and Donald L. Schilling	McGraw-Hill Education	4th Edition, 2013					
2	Digital Communications	John G. Proakis and Masoud Salehi	McGraw-Hill Education	6th Edition, 2020					
3	Communication Systems Engineering	John G. Proakis and Masoud Salehi	Pearson	2nd Edition, 2001					
4	Digital Communications	Simon Haykin	John Wiley& Sons	4 th Edition, 2015					
5	Electronic communication systems	George Kennedy McGraw Hill 6th Edition, 2017	George Kennedy McGraw Hill 6th Edition, 2017	George Kennedy McGraw Hill 6th Edition, 2017					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://youtu.be/hTAlcrqjNps?si=okoRHdUegx9pbOz3						
2	https://youtu.be/s_vmLqT_6NQ?si=MF2OW6AaICiYKTfj						

LINUX AND SCRIPTING

Course Code	PEEVT412	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- This course aims to provide students with a comprehensive understanding of Linux operating systems and scripting languages, specifically Python and TCL, in the context of Very Large Scale Integration (VLSI) design
- 2. Students will learn how to leverage the power of Linux for VLSI applications, automate design processes using Python and TCL scripts

Module No.	Syllabus Description						
1	 Linux Kernel: System Memory Management, Software Program Management, Hardware Management, Filesystem Management. Linux Desktop Environment: The X Window System, KDE Desktop, GNOME Desktop, Unity Desktop. Linux Distributions: Core Linux Distributions, Specialized Linux Distributions 	9					
2	Shell :Reaching the Command Line, Console Terminals, Graphical Terminals, Accessing CLI via a Linux Console Terminal, Accessing CLI via Graphical Terminal Emulation, Using the GNOME Terminal Emulator, Accessing the GNOME Terminal, Using the xterm Terminal Emulator, Accessing xterm.	9					

3	 Basic Shell Commands: Starting the Shell, Using the Shell Prompt, Interacting with the bash Manual, Looking at the Linux file system, Traversing directories, Listing Files and Directories, Handling Files, Copying files, Deleting files, Creating directories, Deleting directories. Linux Security: Removing a user, Modifying a user, Using file permission symbols, Default file permissions, Changing permissions, Changing ownership, Sharing Files. 	9
4	 Vim Editor: Introduction to vim Features, Command Mode: Moving the Cursor, Input Mode, Command Mode: Deleting and Changing Text, Reading and Writing Files. Python scripting: Data structures, modules, inputs and outputs, Floating Point Arithmetic: Issues and Limitations. 	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total	
•	2 Questions from each	• Each question carries 9 marks.		
	module.	• Two questions will be given from each module,		
•	Total of 8 Questions,	out of which 1 question should be answered.		
	each carrying 3 marks	• Each question can have a maximum of 3 sub		
		divisions.		
	(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the Linux operating system and demonstrate proficiency in command-line usage for VLSI design	K2
CO2	Develop TCL scripts for automating tasks and extending functionality in VLSI design environments	К3
CO3	Demonstrate proficiency in handling files, including copying, deleting, creating, and deleting directories using basic shell commands	К3
CO4	Develop Python scripts for automation, data analysis, and interaction with VLSI design tools	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2		2							1
CO2	3	1	2		2							1
CO3	3	1	2		2							1
CO4	3	1	2		2							1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Practical Guide to Linux® Commands, Editors, and Shell Programming	Guido van Rossum	Prentice Hall PTR	1/e, 2005			
2	An Introduction to Python	Giuseppe Massobrio	Network Theory Limited	1/e, 2001			
3	Linux [®] Command Line and Shell Scripting Bible	Richard Blum	Wiley	3/e, 2015			
4	MasteringLinux Shell Scripting	Andrew Mallett	Packt Publishing	1/e, 2015			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Linux Command Line	The Linux Command Line	The Linux Command Line	The Linux Command Line			
2	William E. Shotts, Jr.	William E. Shotts, Jr.	William E. Shotts, Jr.	William E. Shotts, Jr.			
3	Creative Commons	Creative Commons	Creative Commons	Creative Commons			
4	2e/2013	2e/2013	2e/2013	2e/2013			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/106/117106113/				
2	https://archive.nptel.ac.in/courses/117/106/117106113/				
3	https://archive.nptel.ac.in/courses/117/106/117106113/				
4	https://archive.nptel.ac.in/courses/117/106/117106113/				

COMPOUND SEMICONDUCTORS

Course Code	PEEVT413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop fundamental knowledge of compound semiconductor materials and its applications
- 2. Develop a strong theoretical background to understand, design and analyse devices made of compound semiconductors
- 3. Learn the basics of VLSI fabrication technology for compound semiconductor devices.

Module No.	Syllabus Description	Contact Hours
1	Compound Semiconductors: Classification of compound semiconductors-	
	Binary, Ternary, Quaternary compound semiconductors (an overview)	
	Material properties of compound semiconductors- Properties of III-V	
	Compound semiconductors (GaAs, GaN, InP, AlGaAs, AlGaN, InGaAs,	
	InAlGaN), IV Compounds: SiC, SiGe; Effect of mole fraction on bandgap	
	and lattice constant	
	Gallium Arsenide: Energy band structure, Crystal structure of GaAs,	
	Velocity Field relationship	9
	III-Nitride semiconductors: Crystal structure of nitrides, Electrical and	
	optical properties AlGaN alloy, InGaN alloy, InAlGaN quaternary alloy,	
	Polarization Effects in nitrides: Spontaneous polarization, Piezoelectric	
	polarization	
	Metal semiconductor junctions: Schottky contacts, I-V characteristics of	
	Schottky barrier junctions, Ohmic contacts	
	Heterojunctions: Type I and Type II and Type III band alignments,	

	Electrostatic characteristics of p-n hetero junctions: Band diagrams	
2	High Speed Devices: High speed performance parameters of devices - Transit time of charge carriers, junction capacitances, ON-resistances and their dependence on the device geometry and size, carrier mobility, doping concentration and temperature Heterojunction Bipolar Transistors- Principle of operation, Energy band diagrams, Types of HBTs- III-V semiconductor, SiGe HBT- Structure, Band gap engineering Metal Semiconductor Field Effect Transistor (MESFET) - Structure of GaAs MESFET, Pinch off and threshold voltage, MESFET Operation and I-V characteristics, Schokley's model, Effects of velocity saturation and velocity field effects High Electron Mobility Transistors (HEMT)- GaAs HEMT- Structure of GaAs HEMT, Principle of operation, Energy band diagrams, Off voltage, I- V characteristics	9
3	Optical Detectors: Photodetectors- Basic principle of operation, Photodetector structures, Photodetector materials, Photodetector parameters- Responsivity and efficiency, photodetector gain; Photodiodes: p-n photodiodes- Device structure, Operation, Analysis; p-i-n photodiodes: Device Structure, Principle of operation; Avalanche photodiodes: Device Structure, Operation Principle Optical Sources: LEDs: Principle of operation of homojunction and heterojunction LEDs, LED materials; LASER: Physics of LASER, LASER materials, Fabry Perot cavity LASER	9
4	Fabrication Technology: Crystal growth, Epitaxy - Vapour phase epitaxy, Oxidation- Dry and wet oxidation, Kinetics of oxidation, Diffusion and Ion implantation, Lithographic techniques- Photolithography, Etching- Dry etching, Wet etching, Deposition techniques- Chemical vapour deposition (CVD), Metallization techniques- Evaporation and sputtering	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome		Bloom's Knowledge Level (KL)
	Summarize the various compound semiconductors and acquire knowledge	
C01	of different types of junctions involved in compound semiconductor based	К2
	devices	
	Identify the important performance parameters of high speed electronic	
CO2	devices and in depth understanding of various high speed compound	K4
	semiconductor devices	
CO3	Understand the physics of important optoelectronic devices made of	V2
	compound semiconductors and their performance parameters	K3
CO4	Identify the important fabrication and processing technologies of	WO.
	compound semiconductor materials and related devices	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create
CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3			2	2							
CO3	3			2	2							2
CO4	3			2	2							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year				
1	Compound Semiconductor Device Physics,	Sandip Tiwari	Academic Press	(1991), ISBN 0-12- 691740-X.				
2	High Speed Semiconductor Devices	S.M. Sze	Wiley	(1990) ISBN 0- 471-62307- 5				
3	VLSI fabrication principles: silicon and gallium arsenide.	Ghandhi, Sorab K	John Wiley & Sons, 1994.	1994.				
4	Fundamentals of semiconductor devices.	Achuthan, M. K., and MK Achuthan KN Bhat	Tata McGraw-Hill,	2006.				
5	Semiconductor devices for high-speed optoelectronics. Vol. 116. Cambridge:	Ghione, Giovanni	Cambridge University Press	2009.				
6	Physics of Semiconductor Devices	S. M. Sze, Kwok K. Ng.	John Wiley& Sons	Third Edition				
7	Lectures on "High speed devices and circuits"	K. N. Bhat	NPTEL Course.					
8	Nitride Semiconductor Devices" Fundamentals and Applications	Hadis MorkoSc	Wiley VCH Verlag GMBH & Co. KGaA.					
9	Power GaN Devices" (pp. 299- 300).	Meneghini, M., Meneghesso, G. & Zanoni, E.	Berlin: Springer.	(2017).				
10	Lectures on "VLSI Technology" by, NPTEL Course.	Dr. Nanditha Das Gupta	NPTEL Course.					

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Solid State Electronic Devices	Ben G. Streetman and Sanjay Kumar Banerjee	Pearson	6/e, 2010				
2	Semiconductor Physics and Devices; Basic Principles,	Donald E Neamen	McGraw-Hill	Third Edition, 2003				

COMPUTER NETWORKS

Course Code	PEEVT414	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To give the basic concepts of computer network and working of layers, protocols and interfaces in a computer network.
- **2.** To introduce the fundamental techniques used in implementing secure network communications and give them an understanding of common threats and its defences.

Module No.	Syllabus Description						
	Introduction to computer communication: Transmission modes,						
	asynchronous, synchronous, simplex, half duplex, full duplex						
1	communication. Switching Network criteria, physical structures, network						
	models, categories of networks, Interconnection of Networks Network	9					
	models, OSI model, TCP/IP protocol suite.						
	Physical layer: Guided and unguided transmission media						
	Data Link Layer: Framing, Flow control (stop and wait, sliding window						
2	flow control) Error control, Error detection(check sum, CRC), Bit stuffing,						
	Ethernet (802.3), CSMA/CD, Logical link control, Wireless LAN (802.11),						
	CSMA/CA						
	Network Layer: Routing and Forwarding, Static routing and						
	Dynamic routing, IPv4 & IPV6, Address Resolution protocols (ARP,						
	RARP)						
3	Routing Algorithms: Distance vector routing algorithm, Routing Protocols:	9					
	Routing Information protocol (RIP), Networking devices - Hubs, Bridges &						
	Switches						
	Transport Layer: UDP, TCP, Congestion Control & Quality of Service –						

SYLLABUS

	Data traffic.	
	Application Layer: Introduction	
	Information security: common attacks	
	Security at Application Layer (E-MAIL, PGP and S/MIME).	
4	Security at Transport Layer (SSL and TLS).	
	Security at Network Layer (IPSec).	
	Firewalls, limitations of firewalls,	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
2 Q moo Tota carr (8x	Questions from each dule. cal of 8 Questions, each rying 3 marks x3 =24marks)	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Summarize the principles and components of computer networks,	K2
CO1	switching, and the layered network architecture.	
CO2	Demonstrate protocols and the functions of different layers.	K2
~~~	Analyse the concept of routing and addressing protocols in the context of	K3
CO3	computer networking	
CO4	Outline the basic concepts of information security at different layers of	K2
	computer networks.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3											2
CO3	3	2	2	2								2
CO4	3	3	2	2								2

	Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Computer Network A Top- down Approach Featuring the Internet	J F Kurose and K W Ross	Pearson Education	3/e, 2010					
2	Cryptography & Network Security	Behrouz A. Forouzan	Tata McGraw-HillQ	IV Edition,200 8					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Data Communications and Networking	Behrouz A. Forouzan	Tata McGraw-HillQ	IV Edition,200 6				
2	Computer Network- A System Approach	Larry Peterson and Bruce S Davie	Elsevier India	IV Edition,201 1				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://youtu.be/OrkQNKqls?si=ChlxAJyFFuJvPUWc				
2	https://youtu.be/rGWPOm3ectk?si=4fJ24XFXyAXL9hWo				
3	https://youtu.be/5vbPS-KnhvI?si=oRj_WZ209CZQTzhv				
4	https://youtu.be/P1uAtSaHfHU?si=EFfnahZex4BFfbZG				

## **ECONOMICS FOR ENGINEERS**

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None	Course Type	Theory

#### **Course Objectives:**

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

## **SYLLABUS**

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST	6

	National income – Concepts - Circular Flow – Methods of Estimation and	
	Difficulties - Stock Market - Functions- Problems faced by the Indian	
	stock market-Demat Account and Trading Account – Stock market	
	Indicators- SENSEX and NIFTY	
	Value Analysis and value Engineering - Cost Value, Exchange Value, Use	
_	Value, Esteem Value - Aims, Advantages and Application areas of Value	_
4	Engineering - Value Engineering Procedure - Break-even Analysis - Cost-	6
	Benefit Analysis - Capital Budgeting - Process planning	

#### Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case Study/Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	<b>60</b>
each carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	K3
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015				
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966				
3	Engineering Economics	R. Paneerselvam	PHI	2012				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition			
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011			
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002			
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001			

#### **SEMESTER S3/S4**

## ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

#### **Course Objectives:**

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description					
1	<ul> <li>Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection &amp; management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics.</li> <li>Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education,</li> </ul>	6				

## **SYLLABUS**

	employment and everyday life, History of women in Science & Technology,				
	Gendered technologies & innovations, Ethical values and practices in				
	connection with gender - equity, diversity & gender justice, Gender policy				
	and women/transgender empowerment initiatives.				
	Introduction to Environmental Ethics: Definition, importance and				
	historical development of environmental ethics, key philosophical theories				
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering				
	Principles: Definition and scope, triple bottom line (economic, social and				
	environmental sustainability), life cycle analysis and sustainability metrics.				
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6			
	Importance of biodiversity and its conservation, Human impact on				
	ecosystems and biodiversity loss, An overview of various ecosystems in				
	Kerala/India, and its significance. Landscape and Urban Ecology:				
	Principles of landscape ecology, Urbanization and its environmental impact,				
	Sustainable urban planning and green infrastructure.				
	Hydrology and Water Management: Basics of hydrology and water cycle,				
	Water scarcity and pollution issues, Sustainable water management practices,				
	Environmental flow, disruptions and disasters. Zero Waste Concepts and				
	Practices: Definition of zero waste and its principles, Strategies for waste				
	reduction, reuse, reduce and recycling, Case studies of successful zero waste				
	initiatives. Circular Economy and Degrowth: Introduction to the circular				
3	economy model, Differences between linear and circular economies,	6			
	degrowth principles, Strategies for implementing circular economy practices				
	and degrowth principles in engineering. Mobility and Sustainable				
	Transportation: Impacts of transportation on the environment and climate,				
	Basic tenets of a Sustainable Transportation design, Sustainable urban				
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and				
	upcoming models of sustainable mobility solutions.				
	Renewable Energy and Sustainable Technologies: Overview of renewable				
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in				
	energy production and consumption, Challenges and opportunities in				
4	renewable energy adoption. Climate Change and Engineering Solutions:	6			
	Basics of climate change science, Impact of climate change on natural and				
	human systems, Kerala/India and the Climate crisis, Engineering solutions to				
	mitigate, adapt and build resilience to climate change. Environmental				

**Policies and Regulations:** Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. **Case Studies and Future Directions:** Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

#### Course Assessment Method (CIE: 50 marks, ESE: 50)

#### **Continuous Internal Evaluation Marks (CIE):**

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

Sl. No.	Item	Particulars	Group/ Individ ual (G/I)	Mark s
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project (Detailed documentation	<ol> <li>1 a) Perform an Engineering Ethics Case Study analysis and prepare a report</li> <li>1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics</li> </ol>	G	8
	of the project, including methodologies, findings, and reflections)	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	Teneerons)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

#### **Evaluation Criteria:**

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	К4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	К4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011				
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006				
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023				
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019				
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012				
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.				
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014				

## Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

#### Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala Module-IV
- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

## LINEAR INTEGRATED CIRCUITS LAB

Course Code	PCECL407	CIE Marks	50
Teaching			
Hours/Week (L:	0:0:3:0	ESE Marks	50
T:P: R)			
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

## **Course Objectives:**

- 1. To study the design and implementation of various Linear Integrated Circuits.
- 2. To familiarize the simulation of basic Linear Integrated Circuits...

Expt.	Fyneriments
110	Experiments
	Part A – List of Experiments using Op Amps
	(Minimum seven experiments mandatory)
1	Familiarization of Operational amplifiers - Inverting and Non inverting amplifiers, Integrator,
	Differentiator - frequency response, Adder, Comparators
2	Measurement of Op-Amp parameters
3	Difference Amplifier and Instrumentation amplifier
4	Schmitt trigger circuit
5	Astable and Monostable multivibrators
6	Waveform generators using Op Amps - Triangular and Sawtooth
7	Wien bridge oscillator - without & with amplitude stabilization
8	RC Phase shift Oscillator
9	Active first and second order filters (LPF, HPF, BPF and BRF)
10	Active Notch filter to eliminate the 50Hz power line frequency
11	Precision rectifiers
Expt.	Part B – Application circuits using ICs
No	[Minimum three experiments are to be done]
1	Astable and Monostable multivibrator using Timer IC NE555

	DC power supply using IC 723: Low voltage and high voltage configurations,
2	Short circuit and Fold-back protection.
3	A/D converters- counter ramp and flash type.
4	D/A Converters - R-2R ladder circuit
5	Study of PLL IC: free running, frequency lock range and capture range
	Part C – Simulation experiments
Expt	[The experiments shall be conducted using open tools such as QUCS, KiCad or variants
N0.	of SPICE]
1	Simulation of any three circuits from experiments 3, 5, 6, 7, 8, 9, 10 and 11 of
1	section I
2	Simulation of experiments 3 or 4 from section II

## Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

## End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voice	Record	Total
10	15	10	10	5	50

## Mandatory requirements for ESE:

- 1. Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- 2. Endorsement by External Examiner: The external examiner shall endorse the record.

## **Course Outcomes (COs)**

## At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and implement basic linear integrated circuits using Op Amps.	K4
CO2	Design and implement basic linear integrated circuits using linear ICs.	K4
СО3	Design and simulate the functioning of basic linear integrated circuits and linear ICs. using simulation tools.	K4
CO4	Effectively troubleshoot a given circuit and analyze it	K4

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2						3			3
CO2	3	3	2						3			3
CO3	3	3	2		3				3			3
CO4	3	3	2						3			3

1: Slight (Low),2: Moderate (Medium),3: Substantial (High), : No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Linear Integrated Circuits	D. Roy Choudhary and Shail B Jain	New Age International Private Limited	6 th edition, 2021		
2	Introduction to Pspice Using Orcad for Circuits and Electronics	M. H. Rashid	Pearson	3 rd edition, 2015		

## **Continuous Assessment (25 Marks)**

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

#### 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

## 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

## 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

## 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

#### 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

#### 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

#### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

## 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

## **MICROCONTROLLERS LAB**

Course Code	PCECL408	CIE Marks	50	
Teaching Hours/Week	0.0.3.0	ESE Marks	50	
(L: T:P: R)	0.0.5.0			
Credits	2	Exam Hours	2 Hrs. 30 Min.	
Proroquisitos (if any)	PCECL307-Logic Circuit	Course Type	Lab	
	Design and Simulation Lab	Course Type	Lab	

## **Course Objectives:**

- 1. To learn Microcontroller Programming using Assembly and C language
- 2. To learn Microcontroller interfaces to various modules
- 3. To learn any advanced microcontrollers like ARM or higher.
- 4. To learn Embedded System Design

Expt.	Experiment
No	
	PART A – Data manipulation experiments using Assembly language(Min 4 has to be completed)
1	Multiplication of two 16-bit numbers.
2	Largest/smallest from a series.
3	Sorting (Ascending/Descending) of data.
4	Matrix addition.
5	LCM and HCF of two 8-bit numbers.
6	Code conversion – Hex to Decimal/ASCII to Decimal and vice versa.
	PART B - Interface to Microcontroller Assembly/C language (Min 3 has to be completed)
1.	Time delay generation and relay interface.
2.	Display (LED/Seven segments/LCD) and keyboard interface.
3.	ADC interface.
4.	DAC interface with waveform generation.
5.	Stepper motor and DC motor interface.
	PART C - Interface with Advanced Microcontroller using C language (Min 3 has to be completed)
1.	PWM generation for DC motor control.
2.	Object/Visitor Counter.

3.	UART interface to Bluetooth.
4.	SPI/I2C interface to display.
5.	Real-time clock.

## Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

## End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voice	Record	Total
10	15	10	10	5	50

## Mandatory requirements for ESE:

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record.

## **Course Outcomes (COs)**

#### At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop 8051 Microcontroller programs	K5
CO2	Design and implement various interfaces to the 8051 Microcontroller	K6
CO3	Design and implement an Embedded System using a 8051 microcontroller	K6
CO4	Design and implement an Embedded System using an ARM processor	K6

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	2								2
CO2	3	3	3	2	3			2				2
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	The 8051 Microcontroller and Embedded Systems Using Assembly and C	Muhammad Ali Mazidi Janice Gillispie Mazidi Rolin D. McKinlay	Printice Hall -Inc	Second, 2007		
2	The 8051 Microcontroller Architecture, Programming and Applications	Kenneth J Ayala Dhananjay V Gadre	Cengage Learning	2010		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	8051 Hardware Description	Datasheet	Intel Corporation	1992		
2	Microprocessors and Microcontrollers	Lyla B. Das	Pearson Education	2011		
3	ARM System-on-Chip Architecture	Steve Furber	Addison-Wesley Educational Publishers Inc	2000		
4	System-on-Chip Design with Arm(R) Cortex(R)-M Processors	Joseph Yiu	ARM Education Media	2019		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	Microprocessors and Microcontrollers - https://nptel.ac.in/courses/106108100				
2	Microcontrollers and Applications - https://nptel.ac.in/courses/117104072				
3	Embedded System Design With ARM - https://onlinecourses.nptel.ac.in/noc22_cs93				

## Continuous Assessment (25 Marks)

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

#### 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

## 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

## 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

#### 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

## 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

#### 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

#### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

#### 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted.

# **SEMESTER 5**

## Electronics Engineering (VLSI Design and Technology)

## **DIGITAL CMOS DESIGN**

Course Code	PCEVT501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

1. This Course aims to offer distinctive coverage of the dynamic and static circuits and to discuss important aspects of timing and synchronisation, power dissipation, interconnect packing, and signal integrity in real-world system design

## **SYLLABUS**

Module No.	Syllabus Description	Contact Hours
	MOS TRANSISTOR PRINCIPLES	
	Introduction to CMOS technology: CMOS logic, CMOS fabrication and	
	layout, Design partitioning, Circuit design, Physical Design, Design	
1	verification, Fabrication, Packaging and testing.	11
	MOS transistor: MOS Transistor Basics, Secondary Effects, Process	
	Variations, Technology Scaling.	
	Static and Dynamic circuits:	
	CMOS Inverter: Static CMOS Inverter: DC Characteristics, Beta Ratio	
	Effects, Noise margin. Other static CMOS logic gates, static properties (2	
2	input NAND, NOR), Combinational logic circuits.	11
	Fundamentals of dynamic logic: Dynamic pass transistor circuits, High	
	performance dynamic circuits-Domino CMOS, Multi Output Domino Logic,	
	Dual-rail Domino Logic, NP Domino logic (NORA) logic.	
3	Designing arithmetic building blocks:	
	Adders: Design considerations, Fast adders, Multipliers, Barrel Shifters,	
	Speed and Area Trade-offs.	11
	Semiconductor Memories: Memory Design, SRAM, DRAM structure and	

	implementations	
4	Interconnect effects: Introduction, Wire Geometry, Interconnect Modelling: Resistance, Capacitance, and Inductance. Interconnect Impact: Delay, Energy, Crosstalk,	11
	Inductive Effects, Effective Resistance and Elmore Delay.	

#### Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basics of MOS Transistors and CMOS Inverter.	К2
CO2	Design Static and Dynamic Logic circuits.	К3
CO3	Design arithmetic and logic circuits and memory elements.	К3
	Simulate and calculate the impacts of R, L, and C parasitic, the effects	
CO4	of technological scaling, ways to deal with capacitive crosstalk, calculate the RC delay, and inductive effects.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3										
CO2	3	3										
CO3	3	3	2									
CO4	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Integrated Circuit Design	Neil H. E. Weste and David Money Harris	Pearson Education.	4/e, 2011		
2	CMOS Digital Integrated Circuits	Sung-Mo Kang, Yusuf Leblebici	Tata McGraw-Hill Education	3/e, 2003		
3	Digital Integrated Circuits – A Design Perspective	Rabaey, Chandrakasan and Nikolic	Pearson Education.	2/e		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	CMOS, Circuit Design, Layout, and Simulation	R. Jacob Baker, Harry W. Li, David E. Boyce	Wiley Interscience	3/e		
2	Introduction to VLSI Circuits and Systems	John P. Uyemura	John Wiley & Sons, Inc.			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc22_ee08/preview, https://nptel.ac.in/courses/117103066,				
2	https://onlinecourses.nptel.ac.in/noc22_ee08/preview				
3	https://www.youtube.com/watch?v=8LRMqA5ZPss, https://archive.nptel.ac.in/courses/117/101/117101058/				
4	https://archive.nptel.ac.in/courses/117/103/117103066/				

Course Code	PCEVT502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **FPGA BASED SYSTEM DESIGN**

#### **Course Objectives:**

1. This Course aims to inculcate the knowledge on advanced design and analysis of digital circuits with HDL. The primary goal is to provide in depth understanding of the system design. The course would enable the students to apply their knowledge for the design of advanced digital hardware systems with the help of FPGA tools.

## **SYLLABUS**

Module No.	Syllabus Description	Contact Hours					
	VERILOG HDL : Verilog HDL Coding Style: Lexical Conventions - Ports						
	and Modules – Operators - Gate Level Modeling - System Tasks & Compiler						
1	Directives - Test Bench - Data Flow Modeling - Behavioral level Modeling -						
	Tasks & Functions	11					
	FPGA ARCHITECTURE: FPGA Architectural options, coarse vs fine						
	grained, vendor specific issues (emphasis on Xilinx FPGA), Antifuse, SRAM						
2	and EPROM based FPGAs, FPGA logic cells, Interconnection network and I/O						
	Pad	11					
	VERILOG MODELLING : Verilog Modelling of Combinational and						
	Sequential Circuits: Behavioral, Data Flow and Structural Realization – Adders						
3	- Multipliers- Comparators - Flip Flops - Realization of Shift Register -	11					
	Realization of a Counter- Synchronous and Asynchronous FIFO –Single port						
	and Dual port RAM – Pseudo Random LFSR – Cyclic Redundancy Check						
4	XILLINX :System Design Examples using Xillinx FPGAs - Traffic light						
	Controller, Real Time Clock - Interfacing using FPGA: Keyboard, LCD						
	Commercial FPGAs: Xilinx, Altera, Actel (Different series description only)	11					

#### Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module.	Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand complex combinational and sequential digital circuits.	К2
CO2	Apply Verilog HDL in modelling Combinational and sequential digital circuits	К3
CO3	Understand digital circuits with Verilog HDL at behavioural, structural, and RTL Levels	K2
CO4	Understand the FPGA Architecture and implement the combinational and sequential digital circuits in FPGA	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1									2
CO2	2		2									2
CO3	3	2	3		1							2
CO4				1								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	FPGA Prototyping by Verilog Examples	Pong P. Chu	John Wiley & Sons	2008			
2	Verilog HDL: A Guide to Digital Design and Synthesis	Samir Palnitkar	Prentice Hall PTR	Second Edition,2003			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Application Specific Integrated Circuits	M.J.S. Smith	Pearson	2000				
2	Digital Design using VHDL	Peter Ashenden	Elsevier	2007				
3	FPGA based system design	W. Wolf	Pearson	2004				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtu.be/IXjNLK7GC70					
2	https://youtu.be/vHLBO05TeyU?si=uef41ETWM7t95oiL					

#### VLSI TECHNOLOGY

Course Code	PCEVT503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECT302	Course Type	Theory

## **Course Objectives:**

- 1. To give knowledge about IC fabrication techniques and VLSI design methodologies.
- 2. To impart the skill of analysis and design of MOSFET and CMOS logic circuits.

## **SYLLABUS**

Module No.	Syllabus Description	Contact Hours
	Material Preparation- Purification, Crystal growth (CZ process), wafer	
	preparation.	
	Thermal Oxidation- Dry and Wet oxidation, Diffusion- diffusion techniques.	
1	Ion implantation -Technique, annealing.	9
	Epitaxy: Vapour phase epitaxy and molecular beam epitaxy Lithography-	
	Photo lithographic sequence, Electron Beam Lithography.	
	Etching and metal deposition, CMOS Twin well process	
	Moore's law. ASIC design, Full custom ASICs, Standard cell based ASICs,	
	Gate array based ASICs, SoCs, FPGA devices, ASIC and FPGA	
2	Design flows, Top-Down and Bottom-Up design methodologies.	9
	Logical and Physical design. Speed power and area considerations in VLSI	
	design	
	CMOS inverters- DC characteristics, switching characteristics, power	
	dissipation, Layout Design rules, Stick Diagram and layout of CMOS	_
3	Inverter, two input NAND and NOR gates.	9

		MOSFET Logic Design -Pass transistor logic, Complementary pass	
		transistor logic and transmission gate logic, realization of functions	
ľ		Read Only Memory-4x4 MOS ROM Cell arrays(OR,NOR,NAND) Random	
	4	Access Memory –SRAM-Six transistor CMOS SRAM cell, DRAM –Three	9
		transistor and One transistor Dynamic Memory Cell	

#### Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5 15		10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part B	Total
• Each question carries 9 marks.	
• Two questions will be given from each module, out of	
which 1 question should be answered.	
• Each question can have a maximum of 3 sub divisions.	60
(4x9 = 36 marks)	
	<ul> <li>Part B</li> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks)</li> </ul>

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize MOSFET fabrication techniques	K2
CO2	Outline the various methodologies in ASIC and FPGA design.	K2
CO3	Understand CMOS technology.	K2
CO4	Design VLSI Logic circuits with various MOSFET logic families.	K2
CO5	Compare different types of memory elements	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create
CO DO M	TT 11 (17 ·		· · · · · ·	$\mathbf{O}$
CO-PO Mannir	ig Table (Manni	ng od Course ()	Dutcomes to Program	Outcomes)
	is i abie (interpr	ng ou course o	accomes to riogram	oucomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											3
CO2	2											3
CO3	2	2	2		2							3
CO4	2	2	2		2							3
CO5	2											3

Text Books									
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	IntroductiontoVLSICircuits and Systems,	John P Uyemura,	Wiley India,	2006					
2	VLSI Technology	S.M. SZE	McGraw-Hill	Indian Edition,2/e,,2003					

	<b>Reference Books</b>										
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year							
1	Digital Integrated Circuits- A Design Perspective	Jan M. Rabaey	Prentice Hall	Second Edition, 2005							
2	Principles of CMOS VLSI Design-A Systems Perspective	Neil H.E. Weste , Kamran Eshraghian	Pearson Publication	Second Edition,2005							
3	Design of Analog CMOS Integrated Circuits	Razavi	McGraw Hill Education India Education, New Delhi	1e,2003.							
4	CMOS Digital Integrated Circuits- Analysis & Design	Sung –Mo Kang & Yusuf Leblebici,	McGraw-Hill,	Third Ed., 2003.							
5	Fundamentals of Modern VLSI Devices	Yuan Taur & Ning,	Cambridge University Press,	2008							

Video Links (NPTEL, SWAYAM)								
Module No.	Link ID							
1	https://youtu.be/Iv4Cj2A3ldw?si=8wkrFXV583vMiJDh,							
1	https://youtu.be/fokSc0xlTfM?si=pbWd_UtVbvVacPA,							
	https://youtu.be/oZSv68esbgI?si=AoGIe2JX9G6GsdYZ,							
2	https://youtu.be/4cPkr1VHu7Q?si=alAxpL5vUn9s24zX,							
	https://youtu.be/ht7nEjNydDU?si=_E7m1qMrUvqdcya4							
3	https://youtu.be/UuafwIJAKhY?si=PRrPHzB4mWxwm5h7							
4	https://youtu.be/Y8FvvzcocT4?si=3anWLYD00aACws9y							

### **EMBEDDED SYSTEM DESIGN**

Course Code	PBEVT504	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304, PBECT404	Course Type	Theory

### **Course Objectives:**

- 1. To design an embedded electronic circuit and implement the same
- 2. To develop system using ARM processor and its peripherals
- 3. Implement and maintain applications written in Embedded C

Module No.	Syllabus Description	Contact Hours					
	1.1 Complex Systems and Microprocessors						
	Embedding Computers, Characteristics of Embedded Computing						
	Applications, Application of Microprocessors, The Physics of Software,						
	Challenges in Embedded Computing System, Characteristics and quality						
	attributes of an embedded system, Performance in Embedded Computing						
	1.2 The Embedded System Design Process						
1	Requirements, Specification, Architecture Design, Designing Hardware and						
	Software Components, System Integration.						
	1.3 Formalisms for System Design						
	Structural Description, Behavioral Description, An embedded system design						
	example.						
	1.4 Embedded product development cycle (EDLC)						
	Different phases of EDLC, EDLC models						
	2.1 Communication devices						
	Serial Communication Standards and Devices - UART, HDLC and SPI.						
2	Serial Bus Protocols - I2C Bus, CAN Bus and USB Bus. Parallel						
	communication standards ISA, PCI and PCI-X Bus.						

	2.2 Memory	
	Memory devices and systems - ROM-Flash, EEPROM,RAM-SRAM,	
	DRAM, Cache memory, memory mapping and addresses, memory	
	management unit-DMA.	
	2.3 Interrupts/Device Driver	
	InterruptsInterrupt sources, recognizing an interrupt, ISR - Device drivers	
	for handling ISR, Interrupt latency.	
	3.1 ARM Processor architecture	
	The Acorn RISC Machine, Architectural inheritance, The ARM	
	programmer's model, ARM development tools.	
	3.2 ARM Assembly Language Programming	
	Data processing instructions, Data transfer instructions, Control flow	
3	instructions, writing simple assembly language programs.	10
	<b>3.3 ARM Organization and Implementation</b>	
	Three stage pipeline ARM organization, five stage pipeline ARM	
	organization, ARM	
	instruction execution, ARM implementation, The ARM coprocessor	
	interface	
	4.1 Architectural Support for High-Level Languages	
	Abstraction in software design, Data types, Floating-point data types, The	
	ARM floating-point architecture, Expressions, Conditional statements,	
	Loops, Functions and procedures, Assembly and C language programming	
	applications of embedded systems.	
	4.2 Architectural Support for System Development	
4	The ARM memory interface, The Advanced Microcontroller Bus	10
	Architecture (AMBA).	
	4.3 Operating system basics	
	Functions of OS, Kernel, types of operating systems.	
	4.4Introduction to Real time operating systems	
	Tasks, process, threads, multiprocessing and multitasking, task scheduling,	
	task communication, choosing an RTOS	

#### **Suggestion on Project Topics**

- 1. Design and Implementation of ARM Cortex Based Motor Speed Control
- 2. ARM7 Processor based Auto Ignition control in automobiles
- 3. ARM Processor-based Real-time Car Theft Detection
- 4. Automated Irrigation system using ARM processor
- 5. ARM processor based Industrial Automation using GSM/Wi-Fi

#### Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Project	Internal Ex-1	Internal Ex-2	Total	
5	30	12.5	12.5	60	

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module, out	
module.	of which 1 question should be answered. Each	
• Total of 8 Questions, each	question can have a maximum of 2 sub divisions.	40
carrying 2 marks	Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the embedded system fundamentals and system design	K1
CO2	Understand the peripheral devices and their interfacing with the processor.	K2
CO3	Understand the ARM processor architecture and pipeline processor organization.	K2
CO4	Write programs in assembly and high-level languages for ARM processor.	К3
CO5	Understand the basics of real time operating systems and their use in embedded systems.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		1						2	2
CO2	3	3	3		3				2			2
CO3	3	3		2	2		2		2			2
CO4	3	3		2	2		2					2
CO5	3	3	3	2	2		2		2			2

	Text Books								
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year					
1	Embedded Systems Architecture, Programming and Design	Raj kamal	ТМН	2 nd edition,2003					
2	Introduction to Embedded Systems	K.V Shibu	McGraw Hill Education India	2 nd edition,2016					
3	Computers as Components: Principles of Embedded Computing System Design	Wayne Wolf	Morgan Kaufman Publishers - Elsevier	3 rd edition,2008					
4	ARM system-on-chip architecture	Steve Furber	Addison Wesley	2 nd edition,2000					

	Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s							
1	An Embedded Software Primer	David E. Simon	Pearson Education Asia	1 st Edition,2000					
2	Embedded Systems Design	Steve Heath	Newnes – Elsevier	2 nd Edition,2002					
3	Embedded Systems Architecture, A Comprehensive Guide for Engineers and Programmers	Tammy Noergaard,	Newnes – Elsevier	2 nd Edition,2012					

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://archive.nptel.ac.in/courses/108/102/108102169/							
2	https://onlinecourses.nptel.ac.in/noc22_cs93/preview							
3	https://archive.nptel.ac.in/courses/108/102/108102169/							
4	https://archive.nptel.ac.in/courses/106/105/106105172/							

# **PBL Course Elements**

L: Lecture (3 Hrs.)	R: Project (1 Hr.), 2 Faculty Members					
	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

### Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

#### 1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

### 2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

### 3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

### 4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

### 5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

## 6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

# ANALOG AND DIGITAL COMMUNICATION

Course Code	PEEVT 521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GBMAT401	Course Type	Theory

## **Course Objectives:**

**1.** This course aims to develop analog and digital communication systems

Module No.	Syllabus Description	Contact Hours
	Block diagram of a communication system. Need for modulation.	
	Amplitude modulation, Equation and spectrum of AM signal, DSB-SC,	
	SSB. Angle modulation: Narrow and wide band FM and their spectra,	
1	relationship between FM and PM, Carson's rule Comparison of AM and	9
	FM.	
	Noise: external, internal, White noise.	
	Sampling and Quantization, Companding- A and mu-law companders.	
2	Pulse code modulation, Transmitter and receiver. DPCM transmitter and receiver. Delta modulation, Slope overload,	9
	Baseband data transmission of digital data through AWGN channel.	
	Mathematical model of ISI, Nyquist criterion for zero ISI, Signal	
3	modelling for ISI, Raised cosine spectrum,	
		9
	Vector model of AWGN channel.	
	Matched filter and correlation receivers	

	Digital band pass modulation schemes-BPSK system and signal	
4	constellation. BPSK transmitter and receiver. QPSK system and Signal	
	constellations. Plots of BER Vs SNR with analysis. QPSK transmitter and	9
	receiver. Quadrature amplitude modulation and signal constellation	

### Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the principles of analog communication systems	K2
CO2	Explain the basic concepts of digital communication	К2
CO3	Analyse the baseband transmission of digital data through AWGN channel	К3
CO4	Apply various digital modulation techniques in the design of digital communication systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	3	-	-	-	2	-	-	-	-	-	-	-
СОЗ	3	3	3	3	2	-	-	-	-	-	-	2
CO4	3	3	3	3	2	-	-	-	-	-	-	2
CO5	3	-	-	-	2	-	-	-	-	-	-	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Communication Systems	Simon Haykin	John Wiley& Sons	4 th Edition, 2015			
2	Principles of Communication Systems	Herbert Taub and Donald L. Schilling	McGraw-Hill Education	4th Edition, 2013			
3	Communication Systems Engineering	John G. Proakis and Masoud Salehi	Pearson	2nd Edition, 2002			
4	Electronic communication systems	George Kennedy McGraw Hill 6th Edition, 2017	McGraw Hill 6th Edition, 2017	George Kennedy McGraw Hill 6th Edition, 2017			
5	Digital Communications	Simon Haykin	John Wiley& Sons	4 th Edition, 2015			
6	Digital Communications: Fundamentals and Applications	Bernard Sklar, Pabitra Kumar Ray	Pearson	2 nd Edition			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Modern Digital and Analog Communication Systems	B. P. Lathi, Zhi Ding	Oxford University Press.	4th edition,				
2	Communication systems	A Bruce Carlson Paul B Crilly	Mc Graw Hill	4th Edition				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=s_vmLqT_6NQ					
2	ttps://archive.nptel.ac.in/courses/117/105/117105143/					
3	https://www.youtube.com/watch?v=lwt2BnOUaQY					
4	https://www.youtube.com/watch?v=hTAlcrqjNps					

### **RENEWABLE ENERGY SYSTEMS**

Course Code	PEEVT 522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

#### **Course Objectives:**

- 1. Understand the environmental issues with conventional fuels, the new methodologies/technologies for the effective utilization of renewable energy sources.
- 2. Familiarize with the characteristics of solar PV and wind power sources
- **3.** Understanding of electronic conversion systems application to renewable energy generation systems and the synchronization with smart grid systems.
- 4. Equip the students to pursue further specialized areas of study such as renewable energy and green consumer electronics, industrial control systems and smart grid, and renewable energy system.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Renewable Energy (RE)Sources: World energy scenario, Over view of conventional energy sources, their limitation, need of renewable energy, potential & development of renewable energy sources ,Renewable energy in India, An overview of types of renewable energy systems - Wind power, Hydropower (micro and mini), Solar energy, Biomass, Bio-fuel, Geothermal Heat energy, Pros and cons; Applications	9
2	Solar Energy: Introduction to photovoltaic (PV) systems - Principle of PV conversion; Commercial solar cell, Thin film PV device fabrication - LPCVD, APCVD, PECVD; Tandem Solar cell fabrication; Solar power extraction using PV-Cells, I-V Characteristics, PV-Inverters without D.C. to D.C. converters, stand alone and grid collected PV	9

	systems, Grid interfacing-with isolation, without isolation, Maximum power point tracking- Methods(MPPT), PV-Inverters with D.C. to D.C. converters-on low frequency side and high frequency side with isolation, without isolation.	
3	Wind Energy: Sources and potentials, Evaluation of Wind Intensity, Topography, General Classification of Wind Turbines-Rotor Turbines, Multiple-Blade Turbines, Drag Turbines, Lifting Turbines, System Toroidal Rotor Amplifier Platform (TARP)–Wind amplified rotor platform (WARP), Generators and speed control used in wind power energy: Fixed speed with capacitor bank, Rotor resistance control, SCIG and DFIG, Synchronous Generator- external magnetized, Synchronous Generator-permanent magnets.	9
4	Introduction to grid connectivity of RE systems, smart grid and emerging technologies, operating principles and models of smart gird components, key technologies for generation, networks, loads and their control capabilities; Evolution of electricity metering, key components of smart metering, overview of the hardware used for smart meters, smart metering protocols. Structure and main components of a distribution management system, Supervisory control and data acquisition (SCADA), distribution system modelling, new trends for smart grids, topology analysis, power flow analysis	9

### Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	~ ~
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the need, importance and scope of various	K2
CO2	Outline the concepts and technologies related to renewable energy systems using Solar-PV	K2
CO3	Outline the concepts and technologies related to renewable energy systems using wind	K2
CO4	Understand the integration of smart grid with renewable energy systems and the fundamentals of Smart metering	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

#### **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2						2					1
CO2	2											
CO3	2											
CO4	3		1									

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Solar Energy: Principles of Thermal Collection and Storage	Nayak J. K. and Sukhatme S. P.	Tata McGraw Hill.	2006				
2	Power Electronics: Circuits, Devices and Applications	Muhannad H. R	Pearson Prentice Hall	2004				
3	Smart Grid Technology and Applications	Nick Jenkins, JanakaEkanayake, [et al.]	Wiley India Ltd	2012				
4	Design of Smart Power Grid Renewable Energy Systems	Ali Keyhani	Wiley-IEEE Press	2016				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Non-Conventional Energy Sources	G.D. Rai	Khanna Publishers	2017				
2	Renewable Energy Technologies	Ramesh & Kumar	Narosa Publishing House	2018				
3	Integration of alternative sources of energy	Felix A. Farret, M. Godoy simoes	Wiley-IEEE Press	2006				
4	Wind power plants and projects developments	Joshua Earnest and T Wizelius	PHI, New Delhi	2011				
5	Handbook of renewable energy technology	Ahmed F Zobba, Ramesh C Bansal	World Scientific, Singapore	2011				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://youtu.be/mh51mAUexK4?si=907PpRIU2ARBAVvV				
2	https://youtu.be/5zAQot4pKgU?si=NH-k7lmY2ErQ5s73				
3	https://youtu.be/bA-yMfHPazI?si=14PgB4stG9FdGC				
4	https://youtu.be/vEFWXyOIYmU?si=q8UmAYoZOL0bW4_H				

## **GRAPH THEORY**

Course Code	PEEVT523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

### **Course Objectives:**

1. To introduce fundamental concepts in Graph Theory, properties and characterisation of graph/trees and graph theoretic algorithms, which are widely used in Mathematical modelling and has applications in all branches of Engineering.

Module No.	Syllabus Description						
	Introduction to Graphs : Introduction- Basic definition - Application of						
	graphs - finite, infinite and bipartite graphs - Incidence and Degree -						
1	Isolated vertex, pendant vertex and Null graph. Paths and circuits -	9					
	Isomorphism, sub graphs, walks, paths and circuits, connected graphs,						
	disconnected graphs and components.						
	Eulerian and Hamiltonian graphs : Euler graphs, Operations on graphs,						
	Hamiltonian paths and circuits, Travelling salesman problem. Directed						
	graphs – types of digraphs, Digraphs and binary relation, Directed paths,						
	Fleury's algorithm.						
	Trees and Graph Algorithms : Trees - properties, pendant vertex, Distance						
2	and centres in a tree - Rooted and binary trees, counting trees, spanning trees,						
3	Prim's algorithm and Kruskal's algorithm, Dijkstra's shortest path algorithm,						
	Floyd-Warshall shortest path algorithm.						
	Connectivity and Planar Graphs : Vertex Connectivity, Edge Connectivity,						
4	Cut set and Cut Vertices, Fundamental circuits, Planar graphs, Kuratowski's						
	theorem (proof not required), Different representations of planar graphs,						

-		
I	Euler's theorem, Geometric dual.	
	Graph Representations and Vertex Colouring : Matrix representation of	
	graphs-Adjacency matrix, Incidence Matrix, Circuit Matrix, Path Matrix.	
	Coloring- Chromatic number, Chromatic polynomial, Matchings, Coverings,	
	Four color problem and Five color problem. Greedy colouring algorithm.	
		1

### Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5 15		10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Explain vertices and their properties, types of paths, classification of graphs and trees & their properties. (Cognitive Knowledge Level: Understand)	K2
CO2	Demonstrate the fundamental theorems on Eulerian and Hamiltonian graphs.	K2
СО3	Illustrate the working of Prim's and Kruskal's algorithms for finding minimum cost spanning tree and Dijkstra's and Floyd-Warshall algorithms for finding shortestpaths.	K3
CO4	Explain planar graphs, their properties and an application for planar graphs.	K3
CO5	Explain the Vertex Color problem in graphs and illustrate an example application for vertex coloring	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3							2		2
CO2	3	3	3	3						2		2
CO3	3	3	3	3						2		2
CO4	3	3	3	3						2		2
CO5	3	3	3			3				2		2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Graph theory,	Narsingh Deo,	PHI	1979					

Reference Books								
Sl. No	Sl. NoTitle of the BookName of the Author/sName of the Publisher							
			free online edition,					
	Graph Theory,	P. Diostal	2016: diestel-graph-	2016				
		K. Diestei,	theory.com/					
			basic.html.					
	Lature duration to Crown Theorem	Develop D. West	Prentice Hall India	2001				
2	Introduction to Graph Theory,	Douglas B. west	Ltd.,	2001				
3	Introduction to Graph Theory,	Robin J. Wilson,	Longman Group Ltd	.,2010				
	Graph theory with Applications	A. Bondy and U.S.R.						
4	Graph uncory with Applications	Murty						

Video Links (NPTEL, SWAYAM)						
Module No.	Module No.					
1	https://onlinecourses.nptel.ac.in/noc22_ma10/preview					
2	2 https://archive.nptel.ac.in/courses/111/106/111106102/					
3	https://nptel.ac.in/courses/128106001					

## CAD FOR VLSI DESIGN

Course Code	PEEVT524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

#### **Course Objectives:**

- 1. Understand the different stages of design flow; the basic data structures and algorithms used in each stage
- 2. Understand data structures and algorithms used in recent CAD tools
- **3.** Identify suitable data structures and propose new algorithms for CAD applications and develop new CAD tools

Module No.	Syllabus Description							
	Graph Terminology: Basic graph theory terminology, Data structures for							
	representation of Graphs Search Algorithms: Breadth First Search, Depth							
1	First Search, Topological Sort Shortest Path Algorithms: Dijkstra's Shortest-	9						
	Path Algorithm for single pair shortest path, Floyd Warshall Algorithm for							
	all pair shortest path							
	VLSI Design Flow, VLSI Design Styles							
	Partitioning: Levels of Partitioning, Parameters for Partitioning,							
2	Classification of Partitioning Algorithms, Kernighan-Lin Algorithm,	9						
	Fiduccia-Mattheyses Algorithm							
	Layout: Layout Layers and Design Rules, Physical Design Optimizations							
3	Compaction: Applications of Compaction, Informal Problem Formulation,							
	Graph Theoretical Formulation, Maximum Distance Constraints, Longest	9						
	Path algorithm for DAG, Liao-Wong Algorithm.							
	Placement: Optimization Objectives, Wirelength Estimation, Weighted							

	Wirelength, Maximum Cut Size, Wire Density							
	Placement Algorithms: Quadratic Placement							
	Floorplanning: Optimization Objectives, Slicing Floorplan, Non-Slicing							
	Floorplan. Floorplan Representations: Constraint Graph, Sequence Pair							
	Global Routing: Terminology and Definitions, Optimization Goals,							
4	Representation of Routing Regions	9						
	Maze Routing Algorithms: Lee's Algorithm,							
	Detailed Routing: Horizontal and Vertical Constraint Graph. Channel							
	Routing Algorithms: Left-Edge algorithm							

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	<i></i>
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Apply Search Algorithms and Shortest Path Algorithms to find various graph solutions.	К3
CO2	Apply partitioning algorithms on graphs representing netlist.	К3
CO3	Apply different algorithms for layout compaction and placement	K3
CO4	Utilise different algorithms to solve floorplan and routing problems.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2							1		
CO2	3	3	2							1		
CO3	3	3	2							1		
CO4	3	3	2							1		
CO5												

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	"Algorithms for VLSI Design Automation",	Gerez,Sabih H.	John Wiley & Sons	2006.		
2	Algorithms for VLSI Physical Design Automation	Sherwani, Naveed A	Kluwer Academic Publishers	1999		
3	VLSI Physical Design: From Graph Partitioning to Timing Closure	Jin Hu, Jens Lienig, Igor L. Markov, Andrew B. Kahng	Springer	2011		

SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	VLSI Physical Design Automation: Theory and Practice	Sadiq M. Sait and H. Yousse	World Scientific	1999
2	Introduction to Algorithms.	Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest	The MIT Press	3rd edition, 2009

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://youtu.be/hk5rQs7TQ7E?feature=shared			
2	https://youtu.be/O9guSe5_tG0			
3	https://youtu.be/F44WOxhbtV0			
4	https://youtu.be/TYy2o8Qy4TY			

## NANOELECTRONICS

Course Code	PEEVT526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

#### **Course Objectives:**

- 1. To understand the challenges of scaling of devices to Nano-meter scales
- **2.** To design novel transistor devices to reduce the short channel effects and to improve the performance
- **3.** To understand the Nano-scale quantum transport in Nano electronic devices from atom to transistor
- 4. To apply quantum mechanics in materials and quantum devices

Module No.	Syllabus Description					
	Introduction to Nano electronics-Review of MOSFETs- Band diagram-					
	operation-threshold voltage- current-MOSFET parameters.					
	Challenges going to sub-100 nm MOSFETs- Technological and physical					
	limits of Nano electronic systems, characteristic lengths					
	Scaling and short channel effects-Channel length, Oxide layer thickness,					
1	tunneling, power density, non-uniform dopant concentration, threshold					
	voltage scaling, hot electron effects, sub threshold current, velocity	9				
	saturation, DIBL, channel length modulation.					
	High-K gate dielectrics- Effective oxide thickness, Effects of high-K gate					
	dielectrics on MOSFET performance					
	(Text books 1,2,3)					
	Novel MOS Devices and Performance Optimization	1				
2	Silicon-on-insulator devicesFD SOI, PD SOI	9				

Multi gate MOSFET physics-natural length and short channel effects.         Multi Gate MOSFET performance optimization: Fins, Fin Width, Fin         Height and Fin Pitch, Fin Surface Crystal Orientation, Fins on Bulk Silicon,         Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work         function requirements, Poly silicon Gate, Metal Gate, Tunable Work         function metal gate, Mobility and Strain Engineering, Nitride Stress Liners,         Embedded SiGe and SiC Source and Drain, Local Strain from Gate         Electrode, Substrate Strain, Strained Silicon on Insulator.         (Text books 1.4)         Quantum Transport         Atomistic view of electrical Resistance-Energy level diagram- What makes         electrons flow- The quantum of conductance - Potential profile- Coulomb         blockade - Towards Ohm's law         Schrodinger equation- Method of finite differences - Examples (particle in a box only)         3       Band structure- 1-D examples- General result with basis-2-D example         9       Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire         Ballistic to Diffusive transport-Landauer formula, Landauer-Buttiker         formula. Ballistic and Diffusive transport - transmission.         (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)         Applications of Quantum mechanics and Quantum device		Multiple gate MOSFETsDouble gate MOSFETs, FinFETs, Nanowires-	
Multi Gate MOSFET performance optimization: Fins, Fin Width, Fin Height and Fin Pitch, Fin Surface Crystal Orientation, Fins on Bulk Silicon, Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work function requirements, Poly silicon Gate, Metal Gate, Tunable Work function metal gate, Mobility and Strain Engineering, Nitride Stress Liners, Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1,4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb 		Multi gate MOSFET physics-natural length and short channel effects.	
Height and Fin Pitch, Fin Surface Crystal Orientation, Fins on Bulk Silicon, Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work function requirements, Poly silicon Gate, Metal Gate, Tunable Work function metal gate, Mobility and Strain Engineering, Nitride Stress Liners, Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1,4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences - Examples (particle in a box only)9Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.94Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb blockade in a Nano capacitor, tunnel junctions,		Multi Gate MOSFET performance optimization: Fins, Fin Width, Fin	
Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work function requirements, Poly silicon Gate, Metal Gate, Tunable Work function metal gate, Mobility and Strain Engineering, Nitride Stress Liners, Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1.4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences - Examples (particle in a box only)9Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling. Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junction-Coulomb staircase, Single electron9		Height and Fin Pitch, Fin Surface Crystal Orientation, Fins on Bulk Silicon,	
function requirements, Poly silicon Gate, Metal Gate, Tunable Work function metal gate, Mobility and Strain Engineering, Nitride Stress Liners, Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1.4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences - Examples (particle in a box only)9Band structure- 1-D examples- General result with basis- 2-D example Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics - solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.94Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb stairease, Single electron9		Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work	
function metal gate, Mobility and Strain Engineering, Nitride Stress Liners, Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1,4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences - Examples (particle in a box only)Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.94Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		function requirements, Poly silicon Gate, Metal Gate, Tunable Work	
Embedded SiGe and SiC Source and Drain, Local Strain from Gate Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1,4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences - Examples (particle in a box only)3Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)94Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling. Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9		function metal gate, Mobility and Strain Engineering, Nitride Stress Liners,	
Electrode, Substrate Strain, Strained Silicon on Insulator. (Text books 1,4)Quantum Transport Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences – Examples (particle in a box only)Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrödinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.94Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron		Embedded SiGe and SiC Source and Drain, Local Strain from Gate	
(Text books 1,4)Quantum TransportAtomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's lawSchrodinger equation- Method of finite differences – Examples (particle in a box only)a Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9		Electrode, Substrate Strain, Strained Silicon on Insulator.	
Quantum Transport         Atomistic view of electrical Resistance-Energy level diagram- What makes         electrons flow- The quantum of conductance - Potential profile- Coulomb         blockade - Towards Ohm's law         Schrodinger equation- Method of finite differences – Examples (particle in         a box only)         3         Band structure- 1-D examples- General result with basis- 2-D example         Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes"         Density of states-Minimum resistance of a wire         Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker         formula. Ballistic and Diffusive transport – transmission.         (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport         atom to transistor" to illustrate the concepts)         Applications of Quantum mechanics and Quantum devices         Tunneling and applications of quantum mechanics- solution of         Schrodinger equation: Free space, Potential well, tunneling through a         potential barrier. Potential energy profiles for material interfaces,         Applications of tunneling.         Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero         structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor       9         Single electron devices –Coulomb blockade in a Nano capacitor, tunnel		(Text books 1,4)	
Atomistic view of electrical Resistance-Energy level diagram- What makes electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's law Schrodinger equation- Method of finite differences – Examples (particle in a box only)93Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling. Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9		Quantum Transport	
electrons flow- The quantum of conductance - Potential profile- Coulomb blockade - Towards Ohm's lawSchrodinger equation- Method of finite differences – Examples (particle in a box only)Band structure- 1-D examples- General result with basis- 2-D example Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wireBallistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.9Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9		Atomistic view of electrical Resistance-Energy level diagram- What makes	
blockade - Towards Ohm's lawSchrodinger equation - Method of finite differences - Examples (particle in a box only)3Band structure - 1-D examples - General result with basis - 2-D example Sub bands - Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire9Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics - solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.94Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		electrons flow- The quantum of conductance - Potential profile- Coulomb	
Schrodinger equation - Method of finite differences - Examples (particle in a box only)9Band structure - 1-D examples - General result with basis - 2-D example Sub bands - Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states - Minimum resistance of a wire Ballistic to Diffusive Transport - Landauer formula, Landauer - Buttiker formula. Ballistic and Diffusive transport - transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics - solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.9Hetero junctions - Modulation-doped hetero junctions - SiGe strained hetero structures- MODFET - Resonant tunnelling-Resonant tunnelling transistor9		blockade - Towards Ohm's law	
a box only)Band structure- 1-D examples- General result with basis- 2-D example9Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire9Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)9Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.9Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9		Schrodinger equation- Method of finite differences – Examples (particle in	
<ul> <li>Band structure- 1-D examples- General result with basis- 2-D example</li> <li>Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wire</li> <li>Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)</li> <li>Applications of Quantum mechanics and Quantum devices</li> <li>Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.</li> <li>Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor</li> <li>Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron</li> </ul>		a box only)	
Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes" Density of states-Minimum resistance of a wireBallistic to Diffusive Transport-Landauer formula, Landauer-Buttiker formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a 	3	Band structure- 1-D examples- General result with basis- 2-D example	9
4       Density of states-Minimum resistance of a wire         Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker         formula. Ballistic and Diffusive transport – transmission.         (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport         atom to transistor" to illustrate the concepts)         Applications of Quantum mechanics and Quantum devices         Tunneling and applications of quantum mechanics- solution of         Schrodinger equation: Free space, Potential well, tunneling through a         potential barrier. Potential energy profiles for material interfaces,         Applications of tunneling.         Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero         structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor         Single electron devices –Coulomb blockade in a Nano capacitor, tunnel         junctions, Double tunnel junctionCoulomb staircase, Single electron		Sub bands- Quantum wells, wires, dots, graphene and "carbon nanotubes"	
4       Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker         formula. Ballistic and Diffusive transport – transmission.       (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)         Applications of Quantum mechanics and Quantum devices         Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.         Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor       9         Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron       9		Density of states-Minimum resistance of a wire	
formula. Ballistic and Diffusive transport – transmission. (Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devices Tunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker	
4(Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devicesTunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9Single electron devices - Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		formula. Ballistic and Diffusive transport – transmission.	
atom to transistor" to illustrate the concepts)Applications of Quantum mechanics and Quantum devicesTunneling and applications of quantum mechanics- solution of Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		(Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport	
Applications of Quantum mechanics and Quantum devicesTunneling and applications of quantum mechanics- solution ofSchrodinger equation: Free space, Potential well, tunneling through apotential barrier. Potential energy profiles for material interfaces,Applications of tunneling.Hetero junctions - Modulation-doped hetero junctions- SiGe strained heterostructures- MODFET- Resonant tunnelling-Resonant tunnelling transistorSingle electron devices –Coulomb blockade in a Nano capacitor, tunneljunctions, Double tunnel junctionCoulomb staircase, Single electron		atom to transistor" to illustrate the concepts)	
Image: A set of the set of t		Applications of Quantum mechanics and Quantum devices	
Schrodinger equation: Free space, Potential well, tunneling through a potential barrier. Potential energy profiles for material interfaces, Applications of tunneling.Hetero junctions of tunneling.Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistorSingle electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron		Tunneling and applications of quantum mechanics- solution of	
<b>4</b> potential barrier. Potential energy profiles for material interfaces, Applications of tunneling. <b>4</b> Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron		Schrodinger equation: Free space, Potential well, tunneling through a	
4Applications of tunneling.4Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor9Single electron devices -Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron		potential barrier. Potential energy profiles for material interfaces,	
4Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor Single electron devices - Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron9		Applications of tunneling.	
<ul> <li>structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor</li> <li>Single electron devices –Coulomb blockade in a Nano capacitor, tunnel</li> <li>junctions, Double tunnel junctionCoulomb staircase, Single electron</li> </ul>		Hetero junctions - Modulation-doped hetero junctions- SiGe strained hetero	
Single electron devices –Coulomb blockade in a Nano capacitor, tunnel junctions, Double tunnel junctionCoulomb staircase, Single electron	4	structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor	9
junctions, Double tunnel junction Coulomb staircase, Single electron		Single electron devices -Coulomb blockade in a Nano capacitor, tunnel	
		junctions, Double tunnel junctionCoulomb staircase, Single electron	
transistor.		transistor.	
Spintronics-Transport of spin, GMR-TMR, applications, Spin Transistor		Spintronics-Transport of spin, GMR-TMR, applications, Spin Transistor	
(Text books 3,6)		(Text books 3,6)	

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the challenges of scaling of electron devices to Nano meter	K2
	scales	
CO2	Design novel transistor devices to reduce the short channel effects and improve performance	K3
	Outline the Nano scale quantum transport in Nano electronic devices	K2
CO3	from atom to transistor	
CO4	Apply quantum mechanics in materials and quantum devices	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	3									3
CO3	3	3	2									3
CO4	3	3	3									3

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Modern VLSI Devices	Yuan Taur, Tak H Ning	Cambridge University Press,	Second edition 2009		
2	Nanoelectronics and Nanosystems	Karl Goser· Peter GlÖsekötter· Jan Dienstuhl	Springer-Verlag Berlin Heide1berg	First Edition, 2004		
3	Nanotechnologyformicroelectronicsandoptoelectronics,	J M Martinez Duart, R J Martin Palma, F Agullo Rueda	Elsevier,	First Edition, 2006		
4	FinFETs and Other multigate Transistors	J-P Colinge	Springer	First Edition, 2008		
5	Quantum Transport Atom to Transistor	Supriyo Datta	Cambridge University Press	First Edition, 2005		
6	Fundamentals of nano electronics,	George W.Hanson,	Pearson Education.	First Edition 2009		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Carrier Transport	Mark Lundstrom	Cambridge University Press	Second Edition, 2000			
2	High Dielectric Constant materials VLSI MOSFET Applications,	H R Huff, D C Gilmer,	Springer	First Edition, 2004			
3	Nanoelectronics and nanosystems From Transistors to Molecular and Quantum Devices	Karl Goser∙ Peter GlÖsekötter∙ Jan Dienstuhl	Springer	First Edition, 2004			
4	NANOSCALE TRANSISTORS Device Physics, Modeling and Simulation	Mark S. Lundstrom, Jing Guo	Springer	First Edition, 2006			
5	Fundamentals of Ultra-Thin- Body MOSFETs and FinFETs	Jerry G. Fossum, Vishal P. Trivedi	Cambridge University Press	First Edition, 2013			
6	Introduction to Nanotechnology	Charles P Poole jr. Frank J Owens	John Wiley and Sons	First Edition, 2003			
7	Introduction to Quantum Mechanics	David J Griffiths, Darrel F schroetter	Cambridge University Press	Third Edition, 2018			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://nptel.ac.in/courses/117108047, https://nanohub.org/resources/5328				
2	https://nptel.ac.in/courses/117108047				
3	https://nptel.ac.in/courses/117107149, https://nanohub.org/resources/8086,, https://nanohub.org/courses/FON1, https://nanohub.org/resources/5306				
4	https://nptel.ac.in/courses/117107149, https://nanohub.org/resources/8086				

# **REAL TIME OPERATING SYSTEMS**

Course Code	<b>PEEVT 527</b>	<b>CIE Marks</b>	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEVT504, PBECT404 (Course code)	Course Type	Theory

### **Course Objectives:**

- 1. To develop skills in Real Time operating system to apply the same in real life applications.
- **2.** Understand the concept of real time operating system along with its synchronization, communication and interrupt handling tools.

Module No.	Syllabus Description	Contact Hours
	Operating system: Types, Objectives and functions, Kernel, Process - States,	
1	Process Control Block, Operations on processes.	9
2	Process Scheduling: FCFS, SJF, Priority, Round-Robin, Multilevel Queue and Multilevel Feedback Queue Scheduling. Thread: Structure. User and Kernel level threads, multi-threading models, multiprocessor scheduling.	9
3	Real Time Operating Systems: Structure and characteristics of Real Time Systems, Task: Task states, Task synchronization -Semaphores- types, Inter Task communication mechanisms: message queues, pipes, event registers, signals, Exceptions and interrupt handling.	9
4	Task constraints, Task scheduling: Aperiodic task scheduling: EDD. EDF, LDF, EDF with precedence constraints. Periodic task scheduling: Rate monotonic and Deadline monotonic, Real time Kernel- Structure, State transition diagram, Kernel primitives. Features of Free RTOS and Linux, Case study of (Kernel design, threads and task scheduling) RTOS: MicroC/OS-II, RTOS control system used in real life applications - in adaptive cruise Control	11

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the functions and structure of general-purpose	K2
001	operating systems.	
CO2	Use different scheduling algorithms on processes and threads.	К3
CON	Interpret a real time operating system along with its	K2
03	synchronization, communication and interrupt handling tools.	
COL	Illustrate task constraints and analyse the different	K4
004	scheduling algorithms on tasks.	
CO5	Illustrate the applications of real time operating systems.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3		1							2
CO2	2	3	2								2	2
CO3	3	3	2		2						3	2
CO4	3	2	3								2	2
CO5	3	3	2		1						2	3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Operating System Principles	Abraham Silberschatz	Wiley India	7th edition, 2011			
2	Operating systems- Internals and design principles	William Stallings	Prentice Hall	7th edition, 2011			
3	Real-TimeConceptsforEmbedded Systems	Qing Li	CMP Books	2 nd Edition,2013			
4	HARD REAL-TIME COMPUTING SYSTEMS Predictable Scheduling Algorithms and Applications	Giorgio C. Buttazzo	Kluwer Academic Publishers	1 st Edition,1997			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Operating Systems	Tanenbaum	Pearson Edition	3 rd Edition, 2007			
2	Micro C/OS-II, The Real Time Kernel	Jean J Lambrosse	CMP Books	2 nd Edition,2011			
3	Real-Time Systems: Theory and Practice	Rajib Mall	Pearson	1st Edition,2008			
4	An Embedded Software Primer	David E Simon	Pearson	2 nd Edition,2012			

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105172/	- Week 1				
2	https://archive.nptel.ac.in/courses/106/105/106105172/	- Week 2				
3	https://archive.nptel.ac.in/courses/106/105/106105172/	- Week 3				
4	https://archive.nptel.ac.in/courses/106/105/106105172/	- Week 4				

## CAD BASED VLSI DESIGN OPTIMIZATION

Course Code	PEEVT525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	5 Credit Elective

#### **Course Objectives:**

- 1. Understand the different stages of design flow; the basic data structures and algorithms used in each stage
- 2. Understand data structures and algorithms used in recent CAD tools
- **3.** Identify suitable data structures and propose new algorithms for CAD applications and develop new CAD tools

Module No.	Syllabus Description			
	Graph Terminology: Basic graph theory terminology, Data structures for			
	representation of Graphs Search Algorithms: Breadth First Search, Depth			
1	First Search, Topological Sort Shortest Path Algorithms: Dijkstra's Shortest-	9		
	Path Algorithm for single pair shortest path, Floyd Warshall Algorithm for			
	all pair shortest path			
	The VLSI Design Problem, The Design Domains, A Quick Tour of VLSI			
	Design Automation Tools: Algorithmic and System Design, Structural and			
	Logic Design, Transistor-level Design, Layout Design, Verification Methods			
2	VLSI Design Flow, VLSI Design Styles	9		
	Partitioning: Levels of Partitioning, Parameters for Partitioning,			
	Classification of Partitioning Algorithms, Kernighan-Lin Algorithm,			
	Fiduccia-Mattheyses Algorithm			
3	Layout: Layout Layers and Design Rules, Physical Design Optimizations	9		

	Compaction: Applications of Compaction, Informal Problem Formulation,							
	Graph Theoretical Formulation, Maximum Distance Constraints, Longest							
	Path algorithm for DAG, Liao-Wong Algorithm, The Bellman-Ford							
	Algorithm							
	Placement: Optimization Objectives, Wirelength Estimation, Weighted							
	Wirelength, Maximum Cut Size, Wire Density							
	Placement Algorithms: Constructive Placement, Iterative Improvement							
	Partitioning: The Kernighan-Lin Partitioning Algorithm							
	Floorplanning: Optimization Objectives, Slicing Floorplan, Non-Slicing							
	Floorplan. Floorplan Representations: Constraint Graph, Sequence Pair							
	Global Routing: Terminology and Definitions, Optimization Goals,							
	Representation of Routing Regions							
4	Maze Routing Algorithms: Lee's Algorithm,							
	Detailed Routing: Horizontal and Vertical Constraint Graph. Channel							
	Routing Algorithms: Left-Edge algorithm							
	General Remarks on VLSI Simulation.							
1								

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Internal Ex	Evaluate	Analyse	Total	
5	15	10	10	40	

#### Criteria for Evaluation (Evaluate and Analyse): 20 marks

#### 1. Literature Review and Report (10 Marks)

#### **Assessment Method:**

- Students review recent publications on a specific topic related to VLSI design (e.g., advancements in layout optimization or new algorithms for partitioning).
- Preparation of a detailed report summarizing the findings, discussing the significance, and suggesting potential improvements or future research directions.

#### Criteria:

• Relevance of Chosen Publications (2 Marks): Selection of up-to-date and relevant research papers.
- Depth of Analysis (4 Marks): Thorough understanding and critical analysis of the literature.
- Clarity and Organization (2 Marks): Well-structured and clearly written report.
- Originality (2 Marks): Innovative insights or perspectives on the topic.

### 2. VLSI Design Flow Understanding and Report (5 Marks)

#### **Assessment Method:**

- Students study the VLSI design flow, including partitioning, placement, and floor planning.
- Preparation of a comprehensive report explaining each step of the design flow, the tools used, and their features.

### **Criteria:**

- Comprehensiveness (2 Marks): Detailed explanation of each step in the VLSI design flow.
- Tool Proficiency (1 Mark): Understanding of the various EDA tools used in the design process.
- Clarity and Detail (1 Mark): Clear and detailed presentation of information.
- Analytical Skills (1 Mark): Critical analysis of the design flow and tool features.

## 3. Graph Theory and Algorithms Practical Assignment (5 Marks)

#### **Assessment Method:**

- Students implement and test various graph algorithms (e.g., Dijkstra's algorithm, Floyd-Warshall algorithm) using appropriate data structures.
- Submit a report with their implementation, test cases, and performance analysis.

## **Criteria:**

- Correctness of Implementation (2 Marks): Accurate implementation of graph algorithms.
- Performance Analysis (1 Mark): Detailed analysis of the algorithm performance on different test cases.
- Clarity and Presentation (1 Mark): Well-organized and clearly written report.
- Problem-Solving Skills (1 Mark): Ability to troubleshoot and optimize the implementation.

#### End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
<ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks (8x3 =24marks)</li> </ul>	<ul> <li>2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. Each question carries 9 marks.</li> <li>(4x9 = 36 marks)</li> </ul>	60

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply Search Algorithms and Shortest Path Algorithms to find various graph solutions.	К3
CO2	Apply partitioning algorithms on graphs representing netlist.	K3
CO3	Apply different algorithms for layout compaction and placement	K3
CO4	Utilise different algorithms to solve floorplan and routing problems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2							1		
CO2	3	3	2							1		
CO3	3	3	2							1		
CO4	3	3	2							1		

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	"Algorithms for VLSI Design Automation",	Gerez,Sabih H.	John Wiley & Sons	2006.		
2	Algorithms for VLSI Physical Design Automation	Sherwani, Naveed A	Kluwer Academic Publishers	1999		
3	VLSI Physical Design: From Graph Partitioning to Timing Closure	Jin Hu, Jens Lienig, Igor L. Markov, Andrew B. Kahng	Springer	2011		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	VLSI Physical Design Automation: Theory and Practice	Sadiq M. Sait and H. Yousse	World Scientific	1999			
2	Introduction to Algorithms.	Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest	The MIT Press	3rd edition, 2009			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://youtu.be/hk5rQs7TQ7E?feature=shared				
2	https://youtu.be/O9guSe5_tG0				
3	https://youtu.be/F44WOxhbtV0				
4	https://youtu.be/TYy2o8Qy4TY				

## **DIGITAL IC DESIGN LAB**

Course Code	PCEVL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304 Logic Circuit Design PCEVT402 Digital System Design	Course Type	Lab

## **Course Objectives:**

- 1. Develop a fundamental understanding of digital logic gates and their implementation using Verilog.
- **2.** Learn the principles of designing and implementing basic combinational and sequential circuits.
- **3.** Develop the ability to synthesize complex digital circuits using EDA tools such as FOSS tools, Cadence, and Synopsys.
- 4. Gain experience in using synthesis tools to optimize and implement digital circuits

#### **Details of Experiment**

Expt. No	Experiment
1	Write Verilog codes to realize the logic gates: AND, OR, NOT, XOR and XNOR
2	Write Verilog codes to realize a 2-bit half adder in all three modeling styles
3	Write a structural Verilog code to realize a 2-bit full adder
4	Write a Verilog code to realize a 2-bit full adder using two half adders
5	Write a behavioural Verilog code to realize a 8:1 MUX
6	Write a behavioural Verilog code to realize a 1:16 DE-MUX
7	Write a behavioural Verilog code to realize a 16:4 encoder
8	Write a behavioural Verilog code to realize a 3:8 decoder
9	Write Verilog codes to realize SR, D, JK and T flip-flops
10	Realize a 3-bit comparator in Verilog using behavioural and structural modeling

11	Realize ring and Johnson counters in Verilog using data-flow modeling
12	Realize a BCD counter in Verilog using gate level abstraction (structural modeling)
13	Synthesize the basic logic gates using FOSS/Cadence/Synopsys tool
14	Synthesize both half adder and full adder using FOSS/Cadence/Synopsys tool
15	Realize a FIFO in Verilog and synthesize using FOSS/Cadence/Synopsys tool

## Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

## End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

## Mandatory requirements for ESE:

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record.

## **Course Outcomes (COs)**

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the ability to write Verilog code to implement fundamental logic gates and verify the functionality of implemented logic gates through simulation and testbenches.	K2
CO2	Get familiarity in various modeling styles (behavioral, dataflow, and structural) to realize combinational and sequential circuits.	K2
CO3	Demonstrate the ability to synthesize Verilog code for complex digital circuits using EDA tools such as FOSS, Cadence, and Synopsys.	К3
CO4	Ability to use synthesis tools to optimize digital circuits for performance, area, and power.	K4
CO5	Ability to produce and present detailed reports on the synthesis and optimization process	К5

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3			2							
CO2	2	3			2							
CO3	3	3	3		3							
CO4	2	3	3	3	3							

Text Books									
Sl. No	Title of the Book	Title of the BookName of the Author/s							
1	Verilog HDL Synthesis: A Practical Primer	J. Bhasker	B. S. Publications,	2001					
2	Fundamentals of Logic Design	Roth C.H	Jaico Publishers. V Ed., 2009	5th Edition					
3	Digital Principles & Design	Donald G Givone	McGraw Hill Education	2017					
4	Digital Design: Principles and Practices	John F Wakerly	Pearson India	4 th , 2008					

Reference Books									
Sl. No	Title of the Book	Title of the Book     Name of the Author/s		Edition and Year					
1	Verilog HDL : A guide to digital design and synthesis	Palnitkar S.,	Prentice Hall; 2003.	2nd Edn.,					
2	ASIC Design and Synthesis RTL Design Using Verilog	<u>Vaibbhav Taraate</u>	Springer	2021					
3	FPGA Prototyping by Verilog Examples: Xilinx Spartan-3 Version	Pong P. Chu	Wiley	2008					

Video Links (NPTEL, SWAYAM)						
Sl. No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/106/117106086/					
2	https://archive.nptel.ac.in/courses/117/106/117106086/					

## Continuous Assessment (25 Marks)

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

## 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

### 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

#### 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

## 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.

• Creativity and logic in algorithm or experimental design.

## 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

## 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

### 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

## **FPGA LABORATORY**

PCEVL508	CIE Marks	50
0:0:3:0	ESE Marks	50
2	Exam Hours	2 Hrs. 30 Min.
PBECT304 Logic Circuit		
Design	C T	Lab
PCEVT402 Digital System	Course Type	Lao
Design		
	PCEVL508 0:0:3:0 2 PBECT304 Logic Circuit Design PCEVT402 Digital System Design	PCEVL508CIE Marks0:0:3:0ESE Marks2Exam HoursPBECT304 Logic Circuit DesignCourse TypePCEVT402 Digital System DesignCourse Type

## **Course Objectives:**

- 1. Equip students with the skills to write, test, and debug VHDL code for various digital circuits.
- **2.** Enable students to design and implement basic digital components such as logic gates, multiplexers, adders, counters, and registers on FPGA.
- **3.** Enable students to design and implement sequential circuits, including various types of flipflops, sequence detectors, and counters, on FPGA.
- **4.** Guide students in designing, implementing, and optimizing complex digital systems, such as ALUs and FIFO buffers, on FPGA.

Expt. No	Experiment
1	Realize basic the logic gates in VHDL and implement on FPGA
2	Realize a 4:1 MUX in VHDL and implement on FPGA
3	Realize a 1:8 DEMUX in VHDL and implement on FPGA
4	Realize a half adder in VHDL and implement on FPGA
5	Realize a full adder in VHDL and implement on FPGA
6	Realize a 2-bit comparator in VHDL and implement on FPGA
7	Realize a 4-bit shift register in VHDL and implement on FPGA
8	Realize a FIFO in VHDL and implement on FPGA
9	Realize a 4-bit adder in VHDL and implement on FPGA
10	Realize a Up/Down counter in VHDL and implement on FPGA
11	Realize a Mealy and Moore sequence detector to detect the sequence 1010 in VHDL and

### **Details of Experiment**

	implement on FPGA
12	Realize an asynchronous BCD counter in VHDL and implement on FPGA
13	Realize a 4-bit Gray to Binary in VHDL and implement on FPGA
14	Realize the flipflops D, JK and T in VHDL and implement on FPGA
15	Realize in VHDL a 4-bit ALU that performs basic arithmetic (addition, subtraction) and logic
	(and, or, xor ) operations on 4-bit inputs and implement on FPGA . Understand the synthesis
	reports and perform timing and power analysis.

## Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

## End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

## Mandatory requirements for ESE:

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record.

## **Course Outcomes (COs)**

## At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Write, test, and debug VHDL code to accurately describe and implement a variety of digital circuits.	К2
CO2	Design and implement fundamental digital components, such as logic gates, multiplexers, adders, and counters, using FPGA technology.	К3
CO3	Design, implement, and analyze sequential circuits, including flip-flops, sequence detectors, and various types of counters, on FPGA.	К3
CO4	Integrate multiple digital components into complex systems, such as ALUs and FIFO buffers, and optimize these systems for performance and resource efficiency on FPGA.	K4

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
C01	2	3			2				1			
CO2	2	3			2				1			
CO3	3	3	3		3				1			
CO4	2	3	3	3	3				2			

Text Books									
Sl. No	Title of the Book	itle of the Book Name of the Author/s		Edition and Year					
1	Digital Design with RTL Design, VHDL, and Verilog	Frank Vahid	Wiley	2010					
2	VHDL for Engineers	Kenneth L. Short	Pearson	1st Edition, 2008					
3	FPGA Prototyping by VHDL Examples: Xilinx MicroBlaze MCS SoC	Pong P. Chu	Wiley	2018					
4	Digital Systems Design Using VHDL	Charles H. Roth Jr., Lizy Kurian John	Cengage Learning	2007					

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	VHDL: Programming by Example	Douglas L. Perry	McGraw-Hill	4th Edition, 2002		
2	Circuit Design with VHDL	Volnei A. Pedroni	MIT Press	2nd Edition, 2010		
3	The Designer's Guide to VHDL	Peter J. Ashenden	Morgan Kaufmann	3rd Edition, 2008		

Video Links (NPTEL, SWAYAM)							
Sl. No.	Sl. No. Link ID						
1	https://archive.nptel.ac.in/courses/117/108/117108040/						
2	https://nptel.ac.in/courses/108106177						

## Continuous Assessment (25 Marks)

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

## 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

## 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

#### 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

#### 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

### 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

#### 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

### 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

# **SEMESTER 6**

## Electronics Engineering (VLSI Design and Technology)

## **SEMESTER 6**

## ANALOG VLSI DESIGN

Course Code	PCEVT601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PCECT302,PCECT303	Course Type	Theory

## **Course Objectives:**

- 1. A foundation in the fundamentals of Analog VLSI Design
- 2. Ability to Design of IC MOS Amplifiers and PLL
- 3. An Introduction to challenges facing in Analog IC Design

Module No.	Syllabus Description				
-	2-Terminal MOS Structure - Flat Band Voltage, Potential Balance and Charge Effect of Gate-Body Voltage on Surface Condition General				
1	Analysis. Inversion: Strong and Weak Inversion, Small Signal Capacitance.				
	3-Terminal MOS Structure - Contacting Inversion Layer, General				
2	Analysis, Body-effect, Pinch-off voltage. Introduction, Regions of Operation.	11			
	4-Terminal MOS Structure – Introduction, Complete All-Region Model –				
	Current Equations, Simplified All-Region Models: Linearizing Depletion				
3	Region Charge, Source-Referenced Simplified All- Region Models. Strong	11			
	Inversion: Complete Strong Inversion Model- Non Saturation				
	Single-Stage Amplifiers - Introduction to basic amplifier Configurations:				
	Gate-Drain Connected Loads: CS, Frequency Response, Noise Analysis,				
	Current-Source Load: CS (only CS)				
4	Cascode, Push-pull amplifier				
	Noise: Types of Noise: Thermal, Flicker, Shot Noise.				

## Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance Assignment/ Microproject		Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total	
5 15		10	10	40	

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gives students structural idea about 2 terminal MOSFET.	K2
CO2	Gives students structural idea about 3 terminal MOSFET	K2
СО3	This module gives students structural idea about 4 terminal MOSFET and strong inversion models.	K1
CO4	This module deals about Single stage amplifiers and its active loads and different types of Noises.	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1									
CO2	3	3	-									
CO3	2	2	-									
CO4	3	2	1									

Text Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Operation and Modeling of the MOS Transistor	YannisTsividis Colin McAndrew	3/e, 2010	OUP		
2	CMOS – Circuit Design, Layout, andSimulation	R. Jacob Baker, Harry W Li,David E Boyce	1998.	3rd Edition,		
3	Design of Analog CMOS Integrated Circuits	BehzadRazavi	2008	Tata McGraw Hill		
4	CMOS Analog Circuit Design	Philip E Allen, Douglas R Holberg	2010	International Student(Second) Edition, First Indian Edition		
5	CMOS – Circuit Design, Layout, andSimulation	R. Jacob Baker, Harry W Li,David E Boyce	1998.	3rd Edition,		

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	CMOS, CIRCUIT Design, Layout and Simulation	Baker, Harry, David	3/e	PHI				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://nptel.ac.in/courses/117101105					
2	https://nptel.ac.in/courses/117101105					
3	https://nptel.ac.in/courses/117101105					
4	https://nptel.ac.in/courses/117101105					

## SYSTEM ON CHIP DESIGN

Course Code	PCEVT602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PCEVT501 Digital CMOS Design	Course Type	Theory

#### **Course Objectives:**

- 1. Understand the SoC design process, including the differences between waterfall and spiral models, and the significance of top-down versus bottom-up approaches in meeting specification requirements.
- 2. Develop the ability to create a comprehensive design specification and execute top-level macro design, utilizing appropriate tools and methodologies for macro integration and productization.
- **3.** Apply best practices in RTL coding, with a focus on proper clock and reset handling to ensure reliable and efficient design implementation.
- Master the design and integration of hard macros, addressing key issues such as design for testability, power distribution, and model development, to produce robust and deliverable macro products.

Module No.	Syllabus Description	Contact Hours
1	System On Chip Design Process: A canonical SoC Design, SoC Design flow - Waterfall vs spiral, Top-down vs Bottom up, Specification requirement, Types of specification, System design process, System level design issues- Soft IP vs Hard IP.	9
2	Macro Design Process: Contents of a design specification, Top level Macro Design, Top level Macro Design Process, Activities and tools, Subblock design, Macro integration, Soft macro productization.	9
3	RTL coding guidelines: Overview of coding guidelines, Guidelines for	9

	clocks and resets - Mixed clock edges, Clock buffers, Gated clocks, Internally generated clocks, Gated clocks, Internally generated resets.	
4	Developing hard macros: Design issues for hard macros – Design for test, Clock and reset, Aspect ratio, Porosity, Pin placement, Power distribution. The hard macro design process, Block integration for hard macros, Productization for hard macros, Model development for hard macros, Soft macro deliverables, Hard macro deliverables.	9

## Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
٠	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	60
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the SoC design flow, differentiate between design methodologies, and address system-level design issues.	K2
CO2	Develop and implement design specifications for macro design, including integration and productization of soft macros.	K3
CO3	Demonstrate proficiency in applying RTL coding guidelines, effectively managing clocks and resets in their designs.	K3
CO4	Design, integrate, and productize hard macros, with an understanding of design issues and deliverables specific to hard macro development	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

<b>CO-PO Mapping</b>	Table	(Mapping of	of Course Ou	itcomes to Pi	rogram Outcomes	5)
----------------------	-------	-------------	--------------	---------------	-----------------	----

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1				1			
CO2	3	3	2	1	1				1			
CO3	3	3	2	1	2				1			
CO4	3	3	2	2	2				1	1		1

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Reuse Methodology manual for System-On-A-Chip Designs	Michael Keating, Pierre Bricaud	Springer	2002				
2	System-on-Chip Design with Arm® Cortex® -M Processors	JOSEPH YIU	arm Education Media	2019				
3	Digital VLSI Chip Design with Cadence and Synopsys CAD Tools	Erik Brunvand	Pearson	1 st , July 2009				
4	SoC Verification-Methodology and Techniques,	Prakash Rashinkar, Peter Paterson and Leena Singh,	Kluwer Academic Publishers,	2001				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital systems Testing and testable Design	Miron Abramovici, Melvin A. Breur, Arthur D. Friedman	Jaico Publishing House,	2001				
2	Hardware Design Verification: Simulation and Formal Method-based Approaches	William K.Lam	Prentice Hall Professional Technical Reference	2005				
3	Design of System on a ChipDevices & Components	Ricardo Reis, Jochen A. G. Jess	Springer	2004				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/108106191					
2	https://nptel.ac.in/courses/108106177					
3	https://nptel.ac.in/courses/106105161					
4	https://www.arm.com/why-arm/custom-socs					
5	https://www.youtube.com/watch?v=dokgLSAhqHI					

## **CONTROL SYSTEMS**

Course Code	PEEVT 631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

- 1. Teach mathematical modelling and calculate the transfer function of a system.
- 2. Discuss the time domain response of first and second order systems.
- **3.** Demonstrate the steps to find the absolute stability of a system.
- **4.** Demonstrate the steps frequency analysis of systems.

Module No.	Syllabus Description	Contact Hours
	Introduction: Basic Components of a Control System, Open-Loop Control	
	Systems and Closed-Loop Control Systems, Examples of control system.	
	Mathematical modelling of control systems: Electrical Systems and	
	Mechanical systems.	
1	Transfer Function from Block Diagrams and Signal Flow Graphs:	9
	impulse response and its relation with transfer function of linear systems.	-
	Block diagram representation and reduction methods, Signal flow graph and	
	Mason's gain formula.	
	Time Domain Analysis of Control Systems: Introduction- Standard Test	
	signals, Time response specifications. Time response of first and second	
	order systems to unit step input and ramp inputs, time domain	
2	specifications.	9
	Steady state error and static error coefficients.	
	Frequency domain analysis: Frequency domain specifications, correlation	
	between time and frequency responses.	

	Stability of linear control systems: Concept of BIBO stability, absolute	
	stability, Routh Hurwitz Criterion, Effect of P, PI & PID controllers.	
3	Root Locus Techniques: Introduction, properties and its construction,	9
	Application to system stability studies. Illustration of the effect of addition of	
	a zero and a pole.	
	Nyquist stability criterion: Fundamentals and analysis.	
	Relative stability: gain margin and phase margin. Stability analysis with	
4	Bode plot.	9
	Design of Compensators: Need of compensators, design of lag and lead	
	compensators using Bode plots.	

### Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Determine transfer function of electromechanical systems using block	APPLY
COI	diagram reduction and SFG.	
	Determine Transient and Steady State behaviour of systems using	APPLY
CO2	standard test signals.	
	Determine absolute stability and relative stability of a system using	APPLY
CO3	Routh Hurwitz Criterion and Root Locus Techniques.	
CO4	Design a control system with suitable compensation techniques using	APPLY
	frequency domain techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	-	-	-	-	1
CO2	2	3	-	-	-	-	-	-	-	-	-	1
CO3	2	3	-	-	-	-	-	-	-	-	-	1
CO4	2	3	-	-	-	-	-	-	-	-	-	1
CO5	2	3	-	-	-	-	-	-	-	-	-	1

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Automatic Control	Farid Golnaraghi,	Wiley India	9 th Edition,				
	Systems	Benjamin C. Kuo		2009				
2	Control Systems	I.J. Nagarath, M.Gopal	New Age International	5 th Edition,				
	Engineering		Pub. Co.	2007				
	Schaum's Outline of	Joseph J. DiStefano,	Mc Graw Hill	3 rd Edition,				
3	Feedback and Control	Allen Stubberud, Ivan J.		2013				
	Systems	Williams						

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Control System Engineering	Norman S. Nise	Wiley India.	5 th Edition and 2009				
2	Modern Control Engineering	Ogata K.,	Prentice Hall of India, Pearson Education	4 th Edition and 2002				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://youtu.be/RcuGxWc0HyQ https://youtu.be/PLgxjVQ6sZ8 https://youtu.be/fsxSst10_cE https://youtu.be/E56sENH6hLU https://youtu.be/2hK8RGVWwJs				
2	https://youtu.be/8-J0Y7bvVz0 https://youtu.be/z2IpQaGHNIU https://youtu.be/LQ46V5OzEws https://youtu.be/8WYLEsa6dIY				
3	https://youtu.be/UTQOQzIYKu0 https://youtu.be/3IM57uKQnXc https://youtu.be/86uzST3SM-0 https://youtu.be/wRnz0JgMIsY				
4	https://youtu.be/gueIWqhJDn8 https://youtu.be/JbuTgcb7Tys https://youtu.be/g-ptzF3w94Y https://youtu.be/VCQVsolxCCE https://youtu.be/VSDLCdKfzMo https://youtu.be/w741WYd4Fe4 https://youtu.be/zkdhvPbqJLM https://youtu.be/JCBsyUp3CPw https://youtu.be/_3e6xFyFmAQ https://youtu.be/8zpb1nb082g				

## **VLSI VERIFICATION**

Course Code	PEEVT 632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304	Course Type	Theory

## **Course Objectives:**

This Course aims to impart the knowledge of

- **1.** The fault modelling and fault detection.
- 2. The concepts of test generation for combinational circuits
- **3.** The concepts of test generation methods DFT, BIST.
- 4. concepts of fault diagnosis

Module No.	Syllabus Description	Contact Hours
	Introduction, VLSI design flow, need of Pre-silicon verification and post-	
	silicon validation and debug -Role of Testing -Yield-ATE. Fault Modelling -	
1	single stuck-at-faults, Bridging faults, delay faults -functional equivalence	9
	and fault collapsing, Dominance collapsing and check point theorem. Logic	
	and Fault Simulation - serial and parallel fault simulation.	
	Testability Measures- Combinational Controllability - Combinational	
2	Observability. Combinational ATPG-Path sensitization method , Boolean	9
	Difference Method-D-Algorithm-PODEM	
	Design for Testability - DFT Fundamentals, Scan design, Partial Scan,	0
3	Random Access Scan	9
	BIST- LFSR Pattern Generation-Output Response Analysis-BILBO.	
4	Boundary Scan standard. Introduction to Formal Design Verification.	9
	Introduction to Fault Diagnosis and Self-checking design.	

## Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	<i>c</i> 0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply Fault equivalence and Fault collapsing	KL3
CO2	Apply basic ATPG Algorithms used in VLSI Testing.	KL3
CO3	Explain the concept of DFT	KL2
CO4	Apply BIST for output response analysis	KL3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Essentials of Electronic Testing of Digital Memory and Mixed Signal VLSI Circuits	Viswani D Agarwal and Michael L Bushnell	Kluwer Academic Publishers	2000							

	<b>Reference Books</b>										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	High-Level Synthesis: Introduction to Chip and System Design	D. D. Gajski, N. D. Dutt, A.CH. Wu and S.YL. Lin	Springer	1st edition, 1992.							
2	Digital systems Testing and Testable Design	M. Abramovici, M A Breuer and A D Friedman	IEEE Press	1994							
3	Testing of Digital Systems	Niraj Jha and Sanjeep K Gupta	Cambridge University Press								
4	Digital Circuit Testing and Testability	P.K. Lala	Academic Press	2002							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://youtu.be/kW70cVmWSR8?si=B0u137fAG1Nrzu7X								
2	https://youtu.be/zekvZgaK54o?si=wU-Uiu8LucspC7W4								
3	https://youtu.be/FBjTy-JMZ8Y?si=7tU4qs353srSPjsg								
4	https://youtu.be/5jBAVSN_U0g?si=tGa7U4OjiiojAYfw								

## **EMBEDDED LINUX SYSTEMS**

Course Code	<b>PEEVT 633</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEVT504 Embedded System Design	Course Type	Elective

#### **Course Objectives:**

- 1. Understand the fundamental concepts of Embedded Linux, including its advantages, system architecture, development setups, and supported processor architectures.
- 2. Gain proficiency in setting up and using the GNU toolchain for cross-platform development, including configuring and using various development tools and IDEs.
- **3.** Learn to select, configure, compile, and install the Linux kernel, along with understanding the structure and components of the root file system and storage device manipulation.
- **4.** Develop the ability to set up various types of filesystems for embedded devices, configure bootloaders, and gain an introduction to device drivers.

Module No.	Syllabus Description	Contact Hours
1	Introduction: Embedded Linux, Real Time Linux, Types of Embedded Linux systems, Advantages of Linux OS, Using distributions, Examples of Embedded Linux systems - system architecture, Types of host/target architectures for the development of Embedded Linux Systems, Debug setups, Boot Configurations, Processor architectures supported by Linux.	9
2	Cross platform Development toolchain: GNU tool chain basics, Kernel Headers Setup, Binutils setup, Bootstrap Compiler Setup, Library Setup, Full Compiler Setup, Using the tool chain. C library alternatives, JAVA, Perl, Python, Ada, IDEs, Terminal Emulators.	9

3	Kernel and Root File System, Kernel Considerations- selection, configuration, Compiling and Installing the kernel Root File System Structure, Libraries, Kernel Modules, Kernel Images, Device Files, Main System Applications, Custom Applications, System Initialization. Storage Device Manipulation. MTD Supported Devices, Disk Devices, Swapping.	9						
4	Root Filesystem Setup : Filesystem Types for Embedded Devices, Writing a Filesystem Image to Flash using an NFS-Mounted Root Filesystem, Placing a Disk Filesystem on a RAM Disk, Rootfs and Initramfs, Setting Up the Bootloader, Embedded Bootloaders, Introduction to Device Drivers.							

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the components, advantages, and architectures of Embedded Linux systems, as well as the development and debugging setups used.	K2
CO2	Gain proficiency in setting up and using the GNU toolchain and other development tools for cross-platform development, including various programming languages and IDEs.	K3
CO3	Demonstrate the ability to select, configure, compile, and install the Linux kernel, and understand the root file system structure and storage device manipulation.	К3
CO4	Gain the capability to set up different types of filesystems for embedded devices, configure bootloaders, and understand the basics of device drivers	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1				1	1		
CO2	2	2	2	1	3				1	1		
CO3	2	2	3	2	3				2	2		
CO4	2	2	3	2	3				2	2		

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Building Embedded Linux Systems	Karim Yaghmour, Jon Masters, Gilad Ben- Yossef, and Philippe Gerum	O'Reilly Media, Inc.	2 nd , 2008			
2	Linux Device Drivers	Alessandro Rubini, Jonathan Corbet	O'Reilly Media, Inc.	3 rd , 2005			
3	Embedded Linux Primer A Practical Real – World Approach	Christopher Hallinan	Prentice Hall	1 st 2006			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Embedded Linux System Design and Development	P Raghavan, Amol Lad, Sriram Neelakandan	CRC Press	2005		
2	Essential Linux Device Drivers	Alan Cox, Sreekrishnan, Venkateswaran	Prentice Hall	1 st , 2008		
3	Embedded Linux - Hardware, Software and Interfacing	Craig Hollabaugh	Pearson Education	2002		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://nptel.ac.in/courses/106105193			
2	https://nptel.ac.in/courses/117106113			
3	https://elearn.nptel.ac.in/shop/partnering-courses/embedded-linux-batch-3/?v=c86ee0d9d7ed			
4	https://www.youtube.com/watch?v=Sk9TatW9ino			

## SPEECH AND AUDIO PROCESSING

Course Code	PEEVT 634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

- 1. To impart the basic concepts of speech signal processing
- 2. To familiarize the auditory mechanism and speech perception

Module No.	Syllabus Description		
	Speech Production: - Acoustic theory of speech productionSource/Filter		
	model - Pitch, Formant, Spectrogram Discrete model for speech		
1	production, Articulatory Phonetics - Acoustic Phonetics - Basic speech units and their classification.		
	Short-Time Speech Analysis, Windowing, STFT, spectra of windows- Wide		
	and narrow band spectrogram -Time domain parameters (Short time energy,		
	short time zero crossing Rate, ACF). Frequency domain parameters-Filter		
2	bank analysis. STFT Analysis, Prosody of speech. MFCC-computation, LPC		
	Model, Pitch and Formant Estimation.	-	
	Speech Enhancement: Spectral subtraction and Filtering, Harmonic		
	filtering, parametric resynthesis. Speaker Recognition: Speaker verification		
3	and speaker identification- log-likelihood. Machine learning models in		
	Speaker Recognition. Language identification: implicit and explicit models.		
	Signal Processing models of audio perception: Basic anatomy of hearing		
4	System: Basilar membrane behaviour. Sound perception: Auditory Filter		
	Banks, Critical Band Structure, Absolute Threshold of Hearing, Masking-	9	
Simultaneous Masking, Temporal Masking. Models of speech perception			
---------------------------------------------------------------------	---		
	I		

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To describe the fundamental concepts, principles, and theories of speech production	K1
CO2	To analyse the speech signal in the time and frequency domain	K2
CO3	To apply speech processing concepts in real-world applications	К3
CO4	To describe the fundamental concepts, principles, and theories of hearing mechanism	K1
CO5	To develop applications by combining concepts of speech production and hearing mechanism	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	2										
CO3	3	2										
CO4	3											
CO5	3	2	3	3	3	3		2				

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	SpeechCommunications:HumanandMachine,Edition2nd	Douglas O'Shaughnessy	Wiley-IEEE Press	2 nd edition			
2	Discrete-Time Speech Signal Processing: Principles and Practice	Thomas F. Quatieri	Prentice-Hall Signal Processing Series	2001			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Processing of Speech Signals	Rabinar	Pearson	2003				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	Speech and Audio Processing 1: Introduction to Speech Processing - Professor E. Ambikairajah https://www.youtube.com/watch?v=Xjzm7S_kBU				
2	Speech Analysis - Professor E. Ambikairajah https://www.youtube.com/watch?v=Y_mSQ7tTlvQ&t=38s				
3	Speech and Audio Processing 1: Introduction to Speech Processing - Professor E.         Ambikairajah https://www.youtube.com/watch?v=Xjzm7S_kBU				
4	Video Links available on hearing anatomy				

Course Code	<b>PEEVT 636</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Solid State Devices (PCECT302)	Course Type	Elective

# SEMICONDUCTOR DEVICE MODELING

# **Course Objectives:**

- **1.** This course explains the qualitative understanding of the physics of the semiconductor devices and conversion of this understanding into equations
- 2. To introduce students to the field of compact modeling and familiarize them with the methods for the model development

Module No.	Syllabus Description	Contact Hours					
	Semiconductor device modeling overview: Types of device models-						
	Numerical Models, Analytical models, compact models.						
	PN Junction diode: DC Current-Voltage Characteristics, Limitations of the						
1	ideal diode model, Static model of the ideal diode and its implementation in	9					
	SPICE2, Static model of the real diode and its implementation in SPICE2,						
	Large-signal model of the diode, Small-signal model of the diode,						
	Temperature and area effects on the diode model parameters.						
	Bipolar junction transistor : Ebers-Moll static model, Ebers-Moll large						
	signal mode, Ebers-Moll small signal model, Gummel - Poon static model,						
2	Temperature and area effects on the BJT model parameters.	9					
	Heterojunction Bipolar junction transistor (HBT): SiGe HBT, Static						
	operation and characteristics, HICUM level 2: Internal transistor model.						
	The four terminal MOS structure: strong inversion, complete symmetric						
3	strong inversion model, simplified symmetric strong inversion model,						
	simplified source referenced strong inversion model.	9					
	MOS Transistor SPICE models: Level 1 static model, level 2 static model,						

	level 1 and level 2 large signal model, small signal model, effect of						
	temperature on the model parameters. MOSFET BSIM models: BSIM1 model, parameter listing, BSIM1 static						
	model, BSIM1 charge model.						
	MOSFET BSIM models: BSIM1 model, parameter listing, BSIM1 static						
	model, BSIM1 charge model.						
	Advanced semiconductor device modeling: Tunnel FET: need of TFET,						
	device structure, TFET modelling approach, modelling the surface potential	_					
4	source channel junction: pseudo 2D method, modelling drain current:	9					
	constant polynomial term assumption, tangent line approximation.						
	Modeling of novel unipolar devices: Device structures and principles of						
	operation of FinFET, HEMT, TFET. Basic modeling concepts						

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Implement the static model of an ideal diode and a real diode in SPICE2 software, demonstrating the ability to set up and run simulations.	K3
CO2	Implement and simulate the Ebers-Moll and Gummel-Poon static models for BJTs in SPICE2, demonstrating practical application skills.	К3
CO3	Explain the differences between the complete symmetric strong inversion model, the simplified symmetric strong inversion model, and the simplified source-referenced strong inversion model for MOS structures.	K2
CO4	Explain the TFET modeling approach and the importance of modeling the surface potential at the source-channel junction.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		1							
CO2	3	2	2		1							
CO3	3	2	2		1							
CO4	3	2	2									

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	COMPACT HIERARCHICAL BIPOLAR TRANSISTOR MODELING WITH HICUM	Michael Schroter	World Scientific	1/e, 2010		
2	Semiconductor Device Modeling With SPICE	Giuseppe Massobrio	McGraw-Hill	2/e, 1993		
3	Tunnel Field-Effect Transistors (TFET) Modelling and Simulation	Jagadesh Kumar Mamidala	John Wiley	1/e, 2017		
4	Operation and Modelling of the MOS Transistor	Yannis Tsividis	Oxford University Press	3/e,2010		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	SEMICONDUCTOR						
1	DEVICES MODELLING AND	Nandita Das Gupta	PHI learning	1e/2004			
	TECHNOLOGY						
	Semiconductor Device	Christopher M. Spowden	Springer	1e/2012			
2	Modelling	Christopher M. Showden	Springer	10/2012			
	Semiconductors Physics and	Donald Neamen	Tata Mc Graw Hill	10/2017			
3	Devices	Donald Weather		40/2017			
	Physics of Semiconductor	S M Sze	Wiley	30/2007			
4	Devices	5 111 520	wiley	3e/200/			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://nptel.ac.in/courses/117106033				
2	https://nptel.ac.in/courses/117106033				
3	https://nptel.ac.in/courses/117106033				
4	https://www.youtube.com/playlist?list=PLbMVogVj5nJQ2k2HAGHFENB4a2nI8OppN				

Course Code	PEEVT 637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECT302 Solid State Devices	Course Type	Elective

## SEMICONDUCTOR PACKAGING AND TESTING

### **Course Objectives:**

- 1. Understand the various semiconductor packaging techniques, including hermetic and plastic packaging, wire bonding, and flip-chip processes, as well as package form factors and standardizations.
- Learn the principles and challenges of surface-mount technology, including the comparison of peripheral leads versus area array packages, and explore current and future trends in lead-free and halogen-free packaging.
- **3.** Explore the packaging requirements for various applications, such as MEMS, image sensors, memory cards, and solar technology, and understand the role of copper interconnects and low-k dielectric materials in future packaging options.
- 4. Gain knowledge of reliability testing methodologies for semiconductor packages, including preconditioning, temperature cycling, thermal shock, and the limitations of current reliability testing techniques.

Module No.	Syllabus Description	Contact Hours
1	Semiconductor packaging: Introduction, Hermetic packaging, Plastic packaging, Wire bonding process flow, flip-chip process flow comparison, Equipment, Material interactions. Package form factors and families: Introduction, Package outline standardization, Leaded package families, Quad lead package family, Substrate-based package families, Chip scale packages, Stacked-die package, Package-on-package, Flip-chip packages, Wafer-level chip scale packages.	9

2	Surface-mount technology: Objectives, Introduction, Package cracking, Surface-mount packages: peripheral leads versus area array, Issues with advanced packaging, Current and future trends: Lead-free and halogen-free packaging.	9
3	Packaging needs: Introduction, Tape automated bonding, Micro electro- mechanical systems (MEMS), Package types used for MEMS, MEMS packaging examples, Image sensor modules, Memory cards, Packaging needs for solar technology. Copper interconnects and low-k dielectric materials. Dielectric constant requirements at each technology node. Future interconnect and dielectric materials. Future packaging options.	9
4	Package reliability: Reliability testing – Introduction, Background, Examples of reliability tests: Preconditioning, Package failure mode, Temperature cycling and thermal shock, High-temperature storage life, Temperature-humidity-bias tests, Limitations of reliability testing.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
ľ	• 2 Questions from each module.	• Each question carries 9 marks.	
	• Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Describe and differentiate various semiconductor packaging techniques and identify package form factors and standardizations.	K2
CO2	Understand the principles of surface-mount technology, identify the challenges of advanced packaging, and recognize trends in lead-free and halogen-free packaging.	K2
СО3	Explain the packaging requirements for MEMS, image sensors, memory cards, and solar technology, and understand the importance of copper interconnects and low-k dielectric materials in future packaging solutions.	K2
CO4	Conduct and interpret various reliability tests for semiconductor packages, and understand the limitations and significance of these tests in ensuring package reliability.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1				2	1		1
CO2	2	1	1	1	2				2	1		1
CO3	2	1	1	1	2				2	2		2
CO4	2	2	1	2	3				2	2		2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Semiconductor Packaging – Materials Interaction and Reliability	Andrea Chen, Randy Hsiao-Yu Lo	CRC Press , Taylor & Francis Group	2012					
2	Semiconductor Advanced Packaging.	John H Lau	Springer	2021					
3	Microelectronic Packaging	Tummala, Rao R.	Springer	2001					
4	Electronic Packaging and Interconnection Handbook	Charles A Harper	McGraw-Hill Professional	4 th , 2004					

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Advanced Electronic Packaging	Richard K. Ulrich, William D. Brown	Wiley-Interscience	2nd Edition, 2006					
2	Chip Scale Package	John H. Lau, Ricky S.W. Lee	McGraw-Hill	2002					
3	Electronic Packaging, Microelectronics, and Interconnection Dictionary	Charles Harper, Martin Miller	McGraw-Hill Education	2005					

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-me61/					
2	https://archive.nptel.ac.in/courses/108/108/108108031/					
3	https://www.youtube.com/watch?v=RpLnIiegXbg					
4	https://www.youtube.com/watch?v=k2CognMJ_9I					

# **VLSI VERIFICATION & TESTING**

Course Code	PEEVT635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEVT402 Digital System Design	Course Type	5 Credit Elective

## **Course Objectives:**

- 1. To understand the complexity of verification and build SoC verification environments.
- **2.** To use UVM to develop scalable, reusable, and efficient verification environments for complex designs.
- 3. To gain proficiency in System Verilog for designing and verifying complex digital systems
- **4.** To design and implement effective test strategies to detect and diagnose faults in VLSI circuits.

Module No.	Syllabus Description	Contact Hours
1	<ul> <li>Introduction: Scope of testing and verification in VLSI design process;</li> <li>Issues in testing and verification of complex chips; embedded cores and SOCs, Functional verification, Timing verification.</li> <li>System Level Verification: Test Plan-Block Level Verification-Interface Verification. Application Based Verification-Canonical SoC Design-Testbench for the Canonical Design. Fast Prototype vs. 100 Percent Testing - FPGA Prototyping, Emulation Based Testing, Silicon Prototyping. Gate Level Verification-Sign Off Simulation, Gate Level Simulation with Unit-Delay Timing , Gate Level Simulation with Full Timing. Formal Verification. Choosing Simulation Tools.</li> </ul>	9

2	<ul> <li>Specialized Hardware for System Verification - Accelerated Verification Overview, RTL Acceleration-Software Driven Verification, Traditional In Circuit Verification, Intellectual Property, Design Guidelines for Accelerated Verification.</li> <li>UVM: Introduction, Verification Planning and Coverage-Driven Verification, Multi-Language and Methodologies, UVM Overview, UVM Testbench and Environments, Interface UVCs, System and Module UVCs, Software UVCs, The SystemVerilog UVM Class Library, UVM Utilities. UVM Library basics, Interface UVCs, Automating UVC Creation, Simple Testbench Integration, Register and Memory Package, System UVCs and Testbench Integration.</li> </ul>	9
3	<b>SystemVerilog</b> : Basic circuits design using SystemVerilog. Procedural Statements and Functions, Implementation of OOPs Concepts in System Verilog, SystemVerilog DPI (Direct Programming Interface), Example, Enum Cast, Code library, SystemVerilog TestBench-SystemVerilog TestBench and Its components, combinational circuit – TestBench Example, Memory Model – TestBench Example. Connecting the testbench and design. 4 port ATM Router- Case study.	9
4	<b>Testing:</b> VLSI testing process and test equipment, Automatic Test Equipment, SCOAP Controllability and Observability, High-Level Testability Measures, Combinational circuit test generation-Redundancy Identification (RID)-Combinational ATPG Algorithms-Test Generation Systems-Test Compaction, Sequential circuit test generation-ATPG for Single-Clock Synchronous Circuits-Simulation-Based Sequential Circuit ATPG, Memory Test, Delay Test, IDDQ test, Design for testability-DFT and Scan Design-Partial-Scan Design. Built-In-Self-Test (BIST)- Random Logic BIST, Memory BIST, Boundary Scan Standard, Analog Test Bus Standard.	9

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### Criteria for Evaluation (Evaluate and Analyse): 20 marks

### 1. Literature Review and Report (10 Marks)

### **Assessment Method:**

- Students select recent publications on a specific topic related to the course (eg. BIST).
- Preparation of a report summarizing the findings, discussing the significance, and proposing future research directions.

### Criteria:

- Relevance of Chosen Publications (2 Marks): Selection of up-to-date and significant research papers.
- Depth of Analysis (4 Marks): Thorough understanding and critical analysis of the literature.
- Clarity and Organization (2 Marks): Well-structured report with clear arguments.
- Originality (2 Marks): Innovative insights or perspectives.

### 2. UVM for verification and Report (5 Marks)

### Assessment Method:

- Use UVM for verification of digital circuits(eg. ALU Verification with UVM, Asynchronous FIFO) using ModelSim Questa/ Synopsys VCS/ Cadence Incisive Enterprise Simulator/ Xilinx Simulator (XSIM) or any other FOSS tools.
- Preparation of a detailed report.

## Criteria:

- Comprehensiveness (2 Marks): Detailed explanation of the design and the tool used.
- Application Understanding (1 Mark): Insight into how the designing relate to the theoretical concepts covered in class.
- Report Quality (1 Mark): Clear and concise presentation of information.
- Reflective Analysis (1 Mark): Personal reflections and insights gained from the realization.

### 3. Simulation Tool Familiarization for SystemVerilog and Report (5 Marks)

### Assessment Method:

- Students use/study simulation tools (e.g., using ModelSim Questa/ Synopsys VCS/ Cadence Incisive Enterprise Simulator/ Xilinx Simulator (XSIM) or any other FOSS tools) to model digital designs discussed in the course.
- They prepare a report on the simulations, including the methodology, results, and interpretations.

### Criteria:

- Tool Knowledge (2 Marks): Understand the features of the simulation tool.
- Familiarisation of Simulations (1 Mark): Representation of design characteristics.
- Report Quality (2 Mark): Well-organized and clearly written report.

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
٠	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out of	
•	Total of 8 Questions, each	which 1 question should be answered.	60
	carrying 3 marks	• Each question can have a maximum of 3 sub	
		divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome					
CO1	Gain proficiency in industry standards and methodologies for design and verification for VLSI	K2				
CO2	Create, configure and customize reusable, scalable, and robust UVM Verification Components (UVCs)	К3				
СО3	Analyse the use of procedural statements and routines in testbench design with system verilog.	K4				
CO4	Apply OOP concepts in designing testbench with system verilog	К3				
CO5	Effectively test VLSI systems using existing test methodologies, equipments and tools.	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		3							
CO2	3		3	3	3							
CO3	3	3	3		3							
CO4	3		3	3	3							
CO5	3		3	3	3							

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	SystemVerilog for Verification	Chris Spears	Springer	2nd Edition, 2008				
2	Digital Systems Testing and Testable Design	M. Abramovici, M. A. Breuer, A. D. Friedman	Piscataway, New Jersey: IEEE Press,	1994				
3	Reuse Methodology Manual for System-on-a-Chip Designs	Micheal Keating & Pierre Bricaud	Springer	2002				
4	A Practical Guide to Adopting Universal Verification Methodology (UVM)	Sharon Rosenberg & Kathleen A Meade	Lulu publishers (Lulu.com)	2nd Edition, 2012				
5	The UVM Primer: A Step-by- Step Introduction to the Universal Verification Methodology	Ray Salemi	Boston Light Press	2013				
6	Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits	M. Bushnell and V. D. Agarwal	Kluwer Academic Publishers	2000				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language, 10.1109/IEEESTD.2018.829959 5	IEEE	IEEE	2018		
2	Introduction to Formal Hardware Verification	T.Kropf	Springer	2000		
3	System-on-a-Chip Verification- Methodology and Techniques	P. Rashinkar, Paterson and L. Singh	Kluwer Academic Publishers	2001		
4	Principles of Testing Electronic Systems	Samiha Mourad and Yervant Zorian	Wiley	2000		
5	SoC Verification Methodology and Techniques	Prakash Rashinkar & Peter Paterson	Springer	2007		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1, 2, 4	Design Verification and Test of Digital VLSI Circuits,				
	https://archive.nptel.ac.in/courses/106/103/106103116/				
2, 3	Unleashing SystemVerilog and UVM Video Series, Synopsys				
2, 5	https://m.youtube.com/playlist?list=PLEgCreVKPx5AP61Pu36QQE0Pkni2Vv-HD				

Course Code	PBEVT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Mathematics for Electrical and Physical Sciences (GYMAT101, GYMAT201)	Course Type	Theory

# **DIGITAL SIGNALS AND PROCESSING**

### **Course Objectives:**

- 1. Understand the definitions and classifications of continuous and discrete-time signals, and perform basic operations on these signals, including analysing their frequency characteristics.
- 2. Comprehend the fundamental properties of continuous-time and discrete-time systems, with a focus on linear time-invariant (LTI) systems, their impulse responses, and various types of convolutions.
- **3.** Gain proficiency in the Fourier transform for both continuous and discrete-time signals, understand the sampling theorem, and learn about frequency aliasing and the properties of the Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT).
- 4. Develop the ability to design and analyse digital FIR and IIR filters, understand their transfer functions and structures, and apply various methods for digital filter design.

Module No.	Syllabus Description			
1	<b>Introduction to Continuous andDiscrete Time Signals:</b> Definition of signal, Basic continuous-time signals, Frequency and angular frequency, Basic operation on signals, Basic discrete-time signals - Frequency and angular frequency of discrete-time signals, Classification of continuous-time & discrete- time signals: Periodic and Non-periodic signals, Even and Odd signals, Energy and power signals.	9		

#### **Suggestion on Project Topics**

1. Collect various real-world signals (audio, temperature, ECG, etc.) and classify them into continuous-time and discrete-time signals. Perform basic operations such as scaling, shifting, and time-reversal on these signals and analyse their properties.

2. Generate discrete-time signals and compute their frequency components using the Discrete Fourier Transform (DFT). Analyse the frequency spectrum and compare it with the theoretical frequency components.

3. Capture audio signals using a microphone, classify them as continuous-time signals, and convert them into discrete-time signals. Perform operations like filtering, amplification, and noise reduction.

4. Obtain ECG signals, classify them, and perform basic operations to analyse heart rate variability, detect anomalies, and filter out noise.

5. Design a discrete-time linear time-invariant (LTI) system and determine its impulse response, then compute the output of the system for various input signals using convolution.

6. Analyse the properties (linearity, time-invariance, causality, and stability) of a given discrete-time system and provide theoretical justifications and practical demonstrations for each property.

7. Design and implement a digital equalizer for audio systems, utilizing the properties of linear timeinvariant (LTI) systems. Analyse its performance in adjusting different frequency bands.

8. Develop a real-time noise cancellation system using digital filters, leveraging convolution and system properties. Test the system in various noisy environments.

9. Compute the Fourier transform of continuous-time and discrete-time signals and analyse their spectra. Use tools like MATLAB, Octave or Python for computation and visualization.

10. Investigate the effects of sampling on signal representation and design an anti-aliasing filter. Demonstrate the sampling theorem and implement the filter to prevent aliasing.

11. Design a spectrum analyser to monitor and analyse the frequency spectrum of wireless communication signals. Use Fourier transforms to visualize and interpret the spectral components.

12. Design and implement an anti-aliasing filter for digital image processing, ensuring high-quality image acquisition without aliasing effects.

13. Design a Finite Impulse Response (FIR) filter using the windowing method. Implement the filter in MATLAB, Octave or Python and analyse its frequency response.

14. Design an Infinite Impulse Response (IIR) filter using the bilinear transformation method. Compare its performance with an analog prototype and analyse stability and frequency response.

15. Design and implement a Finite Impulse Response (FIR) filter to improve audio signal quality in a music player. Analyse the filter's performance in real-time audio enhancement.

16. Design an Infinite Impulse Response (IIR) filter to optimize signal transmission in communication systems. Evaluate its performance in reducing noise and improving signal clarity.

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	Each question can have a maximum of 2 sub	40
each carrying 2 marks	divisions. Each question carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify and classify continuous and discrete-time signals, analyse their frequency components, and perform basic operations on these signals.	K2
CO2	Demonstrate an understanding of the properties and representations of continuous-time and discrete-time systems, particularly focusing on linear time-invariant (LTI) systems and their impulse responses.	K2
CO3	Proficiency in applying Fourier transforms to continuous and discrete- time signals, interpreting spectra, understand the implications of the sampling theorem, and utilizing the properties of the Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT).	K3
CO4	Design and analyse digital FIR and IIR filters, understand their structures and transfer functions, and apply techniques such as impulse invariance and bilinear transformation for digital filter design.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1				1	1	-	
CO2	2	1	1	1	1				1	1	-	
CO3	2	2	1	1	2				1	1	1	1
CO4	2	2	1	2	2				1	1	1	1

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Digital Signal Processing: Principles, Algorithms& Applications	John G. Proakis, Dimitris G. Manolakis	Pearson,	4e, 2007		
2	Signals and Systems	Simon Haykin , Barry Van Veen	Wiley	2e, 2007		
3	Digital Signal Processing: A computer – based approach	Sanjit K. Mitra	McGraw Hill Education	4e, 2013		
4	Signals and Systems,	A Anand Kumar	Prentice Hall India Learning Private Limited	3e, 2013		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Signal Processing	Monson Hayes	McGraw Hill Education	2e, 2009			
2	Schaum's Outline of Signals and Systems	Hwei P. Hsu	McGraw Hill	4e, 2019			
3	Signals And Systems	Sanjay Sharma	S K Kataria and Sons	2013			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/101/117101055/				
2	https://archive.nptel.ac.in/noc/courses/noc20/SEM1/noc20-ee31/				
3	https://onlinecourses.nptel.ac.in/noc20_ee15/preview				
4	https://nptel.ac.in/courses/108106151				

# **PBL Course Elements**

L: Lecture	R: Project (1 Hr.), 2 Faculty Members						
(3 Hrs.)	Tutorial	Practical	Presentation				
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)				
Group discussion	Project Analysis	Data Collection	Evaluation				
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)				
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video				

Assessment and Evaluation for Project Activity	Assessment a	and Eva	luation for	Project	Activity
------------------------------------------------	--------------	---------	-------------	---------	----------

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

## 1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

# 2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

# 3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

# 4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

# 5. Final Presentation (5 Marks)

• Quality and clarity of the overall presentation

- Individual contribution to the presentation
- Effectiveness in answering questions

# 6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

# **DATA ANALYSIS**

Course Code	OEEVT611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

- 1. To understand the basic concepts of data analytics.
- 2. To enable learners to perform data analysis on a real world scenario using appropriate tools.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Data Analysis - Analytics, Analytics Process Model, Analytical Model Requirements. Data Analytics Life Cycle overview. Basics of data collection, sampling, preprocessing and dimensionality reduction	9
2	Descriptive statistics - Measures of central tendency and dispersion, Association of two variables - Discrete variables, Ordinal and Continuous variable, Probability calculus - probability distributions, Inductive statistics - Point estimation, Interval estimation, Hypothesis Testing - Basic definitions, t- test	9
3	Supervised Learning - Classification, Naive Bayes, KNN, Linear Regression. Unsupervised Learning - Clustering, Hierarchical algorithms – Agglomerative algorithm, Partitional algorithms - K- Means. Association Rule Mining - Apriori algorithm	9
4	<ul> <li>Big Data Overview – State of the practice in analytics, Example Applications</li> <li>Credit Risk Modeling, Business Process Analytics.Big Data Analytics</li> <li>using Map Reduce and Apache Hadoop, Developing and Executing a</li> <li>HadoopMapReduce Program.</li> </ul>	9

Ove	erview of modern data analytic tools.Data Analysis Using R -	
Intro	oduction to R - R Graphical User Interfaces, Data Import and Export,	
Attr	ribute and Data Types, , Exploratory Data Analysis - Visualization Before	
Ana	lysis, Dirty Data, Visualizing a Single Variable, Examining Multiple	
Vari	iables.	

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5 15		10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
<ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> </ul>	<ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> </ul>	60
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the basic and mathematical concepts for data analytics (CognitiveKnowledge Level: Apply)	K2
CO2	Illustratevariouspredictiveanddescriptiveanalyticsalgorithms(Cognitive         Knowledge Level: Apply)	K3
CO3	DescribethekeyconceptsandapplicationsofBigDataAnalytics(Cognitive Knowledge Level: Understand)	K2
CO4	Use R programming tool to perform data analysis and visualization	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	2	2								2
CO2	3	3	2	2								2
СОЗ	3	3	2	2	2							2
CO4	3	3	2	2	3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Title of the Book     Name of the Author/s					
1	Analytics in a Big Data World: The Essential Guide to Data Science and its Business Intelligence and Analytic Trends",	Bart Baesens	John Wiley & Sons,	2013.			
2	EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data	David Dietrich	John Wiley & Sons,	2015.			
3	Data Mining Concepts and Techniques'	Jaiwei Han, MichelineKamber	Elsevier,.	2006			
4	Introduction to Statistics and DataAnalysis	Christian Heumann and Michael Schomaker	Springer,	2016			

	Reference Books						
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year			
1	Data Mining: Introductory and Advanced Topics.	Margaret H. Dunham,	Pearson,	2012.			
2	Intelligent Data Analysis	Michael Berthold, David J. Hand	Springer	2007			

	Video Links (NPTEL, SWAYAM)			
Module No.				
1	https://onlinecourses.nptel.ac.in/noc21_cs45/preview			
2	https://archive.nptel.ac.in/courses/106/107/106107220/			

# **ELECTRONIC HARDWARE FOR ENGINEERS**

Course Code	OEEVT612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

**1.** To introduce students to the exciting field of electronic hardware designing and prototyping

Module No.	Syllabus Description	Contact Hours			
	Review of Active and Passive Components Introduction to Brief History of				
	Printed Circuits; What is PCB, Difference between PWB and PCB, Types of				
	PCBs: Single Sided (Single Layer), Multi-Layer (Double Layer), PCB				
	Materials Component Package Types Axial lead, Radial Lead, Single Inline				
1	Package(SIP), Dual Inline Package (DIP), Transistor Outline (TO), Pin Grid	7			
	Array (PGA), Metal Electrode Face (MELF), Leadless Chip Carrier (LCC),				
	Small Outline Integrated Circuit (SOIC), Quad Flat Pack(QPF) and Thin				
	QFP(TQFP), Ball Grid Array (BGA), Plastic Leaded Chip Carrier (PLCC).				
	Brief History of EDA, Latest Trends in Market, How it helps and why it				
	requires, Different EDA tools, Introduction to SPICE and PSPICE				
	Environment, Introduction and Working of PROTEUS Introduction to PCB				
	Design using OrCAD tool PCB Designing Flow Chart: Schematic Entry, Net				
2	listing, PCB Layout Designing, Prototype Designing, Design Rule	10			
	Check(DRC), Design For Manufacturing(DFM) PCB Making: Printing,				
	Etching, Drilling, Assembly of components Introduction to PCB Design				
	using PROTEUS tool Assembly of simple circuits				
	Types of Product Testing Acceptance Testing, Type Testing, Safety Testing,				
3	Safety, safety standards, safety certificates (CE, UL and VDE), Effect of	10			

	environmental testing( refer to IEC 60068-1 for guidance) Quality Standards	
	General awareness of quality standards, quality management systems &	
	documentation, Awareness on ISO 17025, ISO 9001, Calibration and	
	Uncertainty of measurements, Awareness on disposal of Electronic waste.	
	Testing Procedures: Switch Mode Power Supply - (Applicable Standard: IS	
	14886) Safety Testing(Earth Leakage current Test, Dielectric Test, Short	
	Circuit Protection), Performance Testing (Line Regulation, Load Regulation	
	for a variation of Load Min to Max load and vice versa. Safety Testing of	
	Household Appliances: (Applicable Standard IS 302-1) Definitions and	
	Terminology, Protection against Shock, Power Input and Current, Leakage	
	Current and Electric Strength at Operating Temperature	
	Assembly and Maintenance of PC: Introduction to Computer - Difference	
	between Hardware & Software, booting concept, Different input and output	
	devices/ cables, connectors, different types of motherboard, controller cards,	
	Ethernet cards, Different types of RAM used in PC's. Installation: BIOS	
	setting, Formatting of Hard Disk, Installation of Windows, Off-line drive	
4	installation / online drive installation / Windows file repairing / BIOS	9
	password break / Administrative password break / Data recovery.	
	Application Software Installation, Dual Booting Installation. Assembly and	
	dismantling: Assembly and dismantling of PCs front panel connection,	
	servicing of computer, Type of Backup, Taking Backup files and fine tuning	
	the system, running diagnostics tool, running of virus protection program.	

# Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A		Part B	Total
٠	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	60
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify various electronic components along with their specifications.	K2
CO2	Design PC Busing modern software tools.	К3
CO3	Explain various testing procedures of electronic products.	К2
CO4	Experiment and debug various software and hardware issues of a PC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	2	2	3	3							3
CO3	3	2	2	3	3							3
CO4	3	3	2	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	PCB Designer's Reference.	C. Robertson.	Prentice Hall,	2003
2	Signal Integrity Issues and Printed Circuit Board Design,	D. Brooks,	Prentice Hall	2003
3	Advances in Electronic Testing,	D Gizopoulos,	Springer	2006

	Reference Books					
Sl. No	Title of the Book	Title of the Book         Name of the Author/s		Edition and Year		
1	Printed Circuits Handbook,	C Coombs	McGraw-Hill	6 edition,		
		C. Coomos,	Professional,	2007.		
2	Electronic Testing Handbook,		McGraw-Hill,	Dec 1993		
_	PC Repair and Maintenance, A	Joel Rosenthal, Kevin		2002		
3	Practical Guide,	Irwin		, 2003		
	Simple Guide to Computer	AdaneNegaTarekegn,				
4	Maintenance	AlemuKumilachewTege		2015		
	&Troubleshooting,	gne,				

Video Links (NPTEL, SWAYAM)					
Module     Link ID					
1	https://elearn.nptel.ac.in/shop/iit-workshops/completed/electronic-hardware-design-where-to-start/				
2	https://onlinecourses.nptel.ac.in/noc22_ee25/preview				
3	https://nptel.ac.in/courses/117103148				

# **POWER ELECTRONICS**

Course Code	OEEVT613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Analog Circuits (PCECT303)	Course Type	Theory

# **Course Objectives:**

- 1. To study the characteristics of power electronic devices.
- 2. To study different power converter circuits.

Module No.	Syllabus Description	Contact Hours		
	Introduction: Scope and applications of Power Electronics, Properties of			
	ideal switch.			
	Structure and static characteristics: Power diodes, Power BJT, Power			
	MOSFET & IGBT - comparison. Basic principles of wide band gap			
1	devices – SiC & GaN.	9		
	Safe Operating Area: Power BJT, Power MOSFET & IGBT. Drive			
	Circuits: Power BJT and Power MOSFET (any two example circuits - no			
	analysis).			
	SCR: Structure, two transistor analogy, static characteristics.			
	<b>Rectifiers:</b> Three phase diode bridge rectifiers, Single phase half controlled			
	rectifier with R load - Single phase fully controlled bridge rectifier			
2	(continuous conduction) – output voltage equation. Principle of three phase	9		
	half wave controlled rectifier- (average output voltage equation for			
	continuous load current) – related simple problems (1-phase & 3-phase).			
3	DC – DC Switch Mode Converters: Buck, Boost and Buck-boost DC-DC			
	converters. Waveforms and expression of DC-DC converters for output			
	voltage, voltage and current ripple under continuous conduction mode.			
	Isolated converters: Flyback, Forward, Push Pull, Half bridge and Full	1		

	bridge converters - Waveforms and governing equations.	
	DC-AC Switch Mode Inverters: Inverter topologies, Driven Inverters:	
4	Push-Pull, Half bridge and Full bridge configurations, Single phase PWM	
	inverters (Single pulse width and sinusoidal pulse width modulation) - rms	9
	output voltage equation and output voltage waveforms.	

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5 15		10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Outline the operation of power semiconductor devices and its characteristics.	K2
CO2	Design and analyze various rectifier circuits for power devices	К3
CO3	Analyze different power converter circuits	K3
CO4	Illustrate different types of inverter circuits	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3											2
CO2	3		3		3	3						2
CO3	3		3	3	3	3	3					2
CO4	3		3	3	3	3	3					2

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Power Electronics Essentials & Applications	L Umanand	Wiley India	Reprint Edition 2014			
2	Power Electronics Circuits, Devices, and Applications	Muhammad H Rashid	Pearson India	Third Edition			
Reference Books							
-----------------	-----------------------------------------------------------------	---------------------------------------------------------------------------------------------	--------------------------------	--------------------------------	--		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Power Electronics Converters, Applications, and Design	Ned Mohan, Tore M Undeland, William P. Robbins	Wiley India	Third Edition			
2	Power Electronics Principles and Applications	Joseph Vithayathil	Tata McGraw- HILL	Second Reprint 2010			
3	Power Electronics	Daniel W Hart	McGraw-HILL	2011			
4	SiC and GaN Wide Bandgap Device Technology Overview,	Milligan, J. W., Sheppard, S., Pribble, W., Wu, YF., Muller, G., &Palmour, J. W	2007 IEEE Radar Conference.	doi:10.1109/radar.2007.374395.			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://www.youtube.com/watch?v=fOZ8bUrFJGk			
2	https://archive.nptel.ac.in/courses/117/108/117108124/			
3	https://www.youtube.com/watch?v=Dg5AIy0bY1A			

## **SEMESTER S6**

# ENTREPRENEURSHIP

Course Code	OEEVT614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

1. To understand the importance of entrepreneurship and apply it in an organization.

Module No.	Syllabus Description	Contact Hours
	Entrepreneurship: definition, requirements to be an entrepreneur, entrepreneur	
	and intrapreneur, entrepreneur and manager, growth of entrepreneurship in	
	India, women entrepreneurship, rural and urban entrepreneurship.	
1	Entrepreneurial Motivation: motivating factors, motivation theories-Maslow's	
	need hierarchy theory, McClelland's acquired need theory, government's	9
	policy actions towards entrepreneurial motivation, entrepreneurship	
	development programmes.	
	Types of Enterprises and Ownership Structure: small scale, medium scale	
	and large scale enterprises, role of small enterprises in economic	
	development; proprietorship, partnership, limited companies and co-	
	operatives: their formation, capital structure and source of finance.	
2	Institutional Support and Policies: institutional support towards the	Q
	development of entrepreneurship in India, technical consultancy	
	organizations, Government programs, policies, incentive and institutional	
	networking for enterprise setting.	
	Projects: identification and selection of projects, project report, contents and	
3	formulation, elements of project formulation, project design and network	9
	analysis, concept of project evaluation, methods of project evaluation: internal	

	rate of return method and net present value method.	
4	Management of Enterprises: objectives and functions of management, scientific management, general and strategic management; introduction to human resource management: planning, job analysis, training, recruitment and selection, marketing and organizational dimension of enterprises; enterprise financing, raising and managing capital, shares, debentures, bonds, cost of capital; break- even analysis, balance sheet analysis.	9

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module.	Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Describe the fundamental concepts of entrepreneurship	K1, K2, K3
CO2	Understand entrepreneurial motivation and motivation theories	K1, K2, K3
CO3	Analyze types of enterprises and ownership structure	K1, K2, K3
CO4	Apply project evaluation methods	K1, K2, K3, K4, K5
CO5	Evaluate enterprise financial strength	K1, K2, K3, K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1	1	
CO2								2		1		
CO3										1		
CO4	2		1		2					1	3	
CO5	2		1		2					1	3	

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Entrepreneurial Development,	Khanka,SS	S Chand & Company Ltd. New Delhi	2007
2	Entrepreneurial Development	Ram Chandran	Tata McGraw Hill, New Delhi	2008

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Entrepreneurial Development Programmes and Practices	Saini, J. S	Deep & Deep Publications	,2012		
2	Entrepreneurship for Engineers	Badhai, B	Dhanpat Rai & co	2006		
3	Project Management and Entrepreneurship	Desai, Vasant	HimalayanPublishing ,Mumbai	2017		
4	Entrepreneurial Development	Gupta, Srinivasan	S Chand & Sons, New Delhi	2020		

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://nptel.ac.in/courses/110106141			
2	https://nptel.ac.in/courses/110106141			
3	https://nptel.ac.in/courses/110106141			
4	https://nptel.ac.in/courses/110106141			

## **SEMESTER 6**

# **BIOMEDICAL ENGINEERING**

Course Code	OEETVT615	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

1. This course will introduce aspects of biomedical engineering as applied to biological systems described using engineering principles and the use of modern diagnostic and therapeutic equipment.

Module No.	Syllabus Description	Contact Hours			
	Physiology and Bio- Electric Concepts				
	Cell and their structure, Transport of ions through the cell membrane,				
	Resting and action potentials, Bio-electric potentials.				
1	Electrode theory - Electrode potential, Types of electrodes, Equivalent	9			
	circuit.				
	Instrumentation amplifier, Isolation amplifier, Chopper amplifier, Devices				
	to protect against electrical hazards.				
	Body Potential Measurement				
	ECG - Nature of ECG waveform, ECG lead configurations, ECG				
	recorder.				
2	EEG – Evoked potentials, Brain waves, Analysis of EEG	9			
	EMG – Recording setup				
	ERG and EOG				
	Prosthesis				
3	Heart Lung machine – Model of the heart-lung machine.	9			
	Kidney machine – Dialysis.				

Nerve stimulators – Diag	nostic/ Therapeutic stimulator.	
Centralized & Bedside m	nonitoring	
Microprocessor based ve	ntilator	
Medical Imaging		
Computer Tomography	- Basic principle, Image construction, Block	
diagram, Applications.		
4 Magnetic Resonance Imag	ging – Block diagram, Image reconstruction.	9
Ultrasonic Imaging – Diff	erent modes.	
Positron Emission Tomog	raphy – Principle.	

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Learn the basics of bioelectric potentials	K1
CO2	Understand the operation of different biopotential recorders	K2
CO3	Learn the medical equipment for diagnosis and therapy	K1
CO4	Understand the general concepts of imaging systems	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	2										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Handbook of Biomedical	R S Khandnur	TATA McGRAW			
	Instrumentation	K 5 Khandpur	HILL			
2	Biomedical Instrumentation	Leslie Cromwell, Fred J	DIU			
2	and Measurements	Weibell, Erich A Pfeiffer	PHI			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	MedicalInstrumentationApplication and Design	John G Webster	WILEY			
2	Introduction to Biomedical Equipment Technology	Joseph J Carr, John M Brown	PEARSON			

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://www.youtube.com/watch?v=OqNDFF1RsMU		
2	https://www.youtube.com/watch?v=mK6sPBbChqc		
3	https://onlinecourses.swayam2.ac.in/nou23_bt05/preview		
4	https://onlinecourses.nptel.ac.in/noc22_bt56/preview		

## **SEMESTER S6**

# ANALOG IC DESIGN LAB

Course Code	PCEVL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECL303-Analog Circuits PCEVT601 - Analog CMOS Design	Course Type	PCL

## **Course Objectives:**

- 1. Acquire skills in analog circuit design and analysis.
- 2. To familiarize students with EDA tools for simulation of analog integrated circuits.

Expt. No.	Experiments
	Study the transfer characteristics of a MOSFET (n-MOS and p-MOS) and determine the
	threshold voltage.
2	Study the output characteristics of a MOSFET (n-MOS, p-MOS).
	Study the effect of substrate potential on the threshold voltage and I-V characteristics of a
3	MOSFET.
_	Design a CS amplifier with resistive load and triode load. Perform Transient, DC, and AC
4	analyses, plot the frequency response, and obtain the bandwidth.
	Design a CS amplifier with diode-connected load and constant current source load.
5	Perform Transient, DC, and AC analysis, plot the frequency response, and obtain the
	bandwidth.
6	Design a Common Drain amplifier and perform AC analysis.
7	Design a Common Gate amplifier for a specified current gain and perform AC analysis.
8	Design a RC coupled amplifier using MOSFET and perform AC analysis.

9	Design a current mirror with passive and active loads.
10	Design a cascode current mirror with active and passive loads.
11	Design a differential amplifier for a specified gain and perform transient analysis.
12	Perform the layout design of a Common Source amplifier and check DRC and LVS.
13	A/D Converters - 3-bit Flash ADC
14	D/A converter - 3-bit Ladder type
15	Study of PLL: free running frequency lock range capture range

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

#### End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Analyse single stage amplifiers and evaluate its characteristics.	K4
CO2	Design various circuits such as current mirrors, differential amplifiers.	K5
CO3	Outline various architectures of Data converters.	K2
CO4	Understand the concepts of layout generation of analog circuits.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		1				2		1	
CO2	3		3	3	2				2		1	
CO3	3				2				2		1	
CO4	3				3				2		1	

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw-Hill Education	2nd Edition 2015				
2	CMOS Analog Circuit Design	Philip E. Allen and Douglas R. Holberg	Oxford University Press	2nd Edition 2010				
3	Analysis and Design of Analog Integrated Circuits	Hurst, S. Lewis and R. G. Meyer, WilePaul R. Gray, Paul Jy	Wiley	5th Edition 2010				

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Analog Integrated Circuit Design	David A. Johns, Ken Martin	Wiley	2nd Edition 2013				
2	CMOS: Circuit Design, Layout and Simulation	Baker, Li, and Boyce	Wiley	1st Edition 2009				
3	Introduction to PSpice Using Orcad for Circuits and Electronics	M. H. Rashid	Pearson	3rd Edition 2003				
4	Linear Integrated Circuits	D. Roy Choudhary, Shail B Jain	New Age International Books	3rd Edition 2021				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/106/117106030/					
2	https://onlinecourses.nptel.ac.in/noc22_ee37/preview					
3	https://www.youtube.com/@InderjitSingh87					

## **Continuous Assessment (25 Marks)**

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

## 2. Conduct of Experiments (7 Marks)

• Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.

- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

#### 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

## 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

## 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

## 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

## 3. Result with Valid Inference/Quality of Output (10 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

• Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

## 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

## 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

# **SEMESTER 7**

ELECTRONICS ENGINEERING (VLSI DESIGN AND TECHNOLOGY)

## **SEMESTER S7**

## LOW POWER VLSI DESIGN

Course Code	PEEVT741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

1. To impart knowledge on different sources of power dissipation, power minimization techniques, switched capacitance minimization and working principle of adiabatic logic circuits

Module No.	Syllabus Description	Contact Hours
	Physics of Power dissipation in MOSFET devices	
	Need for low power circuit design, MIS Structure	
	Deep submicron transistor design issues: Short channel effects	
	Channel Length Modulation , Surface scattering, Punch through, Velocity	
	saturation, Impact ionization, Hot electron effects, Body Effect, Narrow	
1	width effect, Vth roll-off, Drain Induced Barrier Lowering, Gate Induced	9
	drain leakage, Tunneling Through Gate Oxide, Subthreshold Leakage	
	Current,	
	Emerging Technologies for Low Power:	
	Hi-K Gate Dielectric, Lightly Doped Drain-Source, Silicon on Insulator,	
	Sources of power dissipation in digital ICs –	
	Dynamic Power Dissipation:	
	Short Circuit Power: Short Circuit Current of Inverter, Short circuit current	
2	dependency on input rise and fall time, Variation of shortcircuit current	
	with load capacitance.	9
	Switching power dissipation: Switching Power of CMOS Inverter,	
	Switching activity and its effects.	

	Glitching Power: Glitches and its effect on power dissipation				
	Static Power Dissipation:				
	Sources of Leakage Power, Effects of $V_{dd} \mbox{ and } V_t$ on speed, Constraints				
	on V _t Reduction.				
	Low-Power Design Approaches-				
	Supply Voltage Scaling for Low Power:				
	Effect of Supply voltage on Delay and Power				
	Effect of Supply voltage on Static and Dynamic Power				
	Multi VDD ,Dynamic VDD, Dynamic Voltage and Frequency Scaling				
3	(DVFS) Approaches.	9			
	Architectural Level Approaches: Pipelining and Parallel Processing				
	Leakage power reduction Techniques:				
	Effect of threshold voltage on Leakage Power				
	Transistor stacking, MTCMOS, VTCMOS				
	Power gating& Clock gating Techniques.				
	Circuit Design Styles for Low Power-				
	Non clocked circuit design style: Fully Complementary logic. NMOS and				
	Pseudo –NMOS logic, Differential Cascode Voltage Switch logic(DCVS)				
4	Clocked design style: Basic concept, Dynamic Logic, Domino logic,	0			
	Differential Current Switch Logic.	9			
	Adiabatic switching - Adiabatic charging, Adiabatic amplification,				
	Adiabatic logic gates, Pulsed power supplies.				

# Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the impact of technology scaling on power dissipation in digital ICs and various short channel effects	К2
CO2	Discuss the different sources of power dissipation in digital ICs.	К2
CO3	Describe the various approaches for power management in digital ICs.	K2
CO4	Apply various clocked and non-clocked design styles for logic implementation	К3
CO5	Describe the use of Adiabatic switching for power management in digital ICs.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3											2
CO3	3			2								2
CO4	3	2	3		3							2
CO5	3											2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw-Hill	2/e, 2002	
2	CMOS: Circuits Design, Layout and Simulation,	Baker, Li, Boyce,	Prentice Hall India,	2000	
3	Microelectronic Circuits	Sedra & Smith	Oxford University Press	6/e,2017	

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	CMOS Analog Circuit Design	Phillip E. Allen, Douglas	Oxford University	3/e		
1	CIVIOS Analog Circuit Design,	R. Holbery	Press			
	Fundamentals of	Dobrod Dozovi	Wilow student Edition	2014		
2	Microelectronics	Benzau Kazavi whey student Edition		2014		
3	Analysis and Design of Analog	Meyer Gray , Hurst,	Wilow	5/2 2000		
	Integrated Circuits	Lewis	wiley	5/e, 2009		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234				
2	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234				
3	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234				
4	Switching Circuits and Logic Design by Prof. Indranil Sengupta Lectures 47-51				

#### **SEMESTER S7**

# **INTRODUCTION TO MEMS**

Course Code	PEEVT742	<b>CIE Marks</b>	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	PE

## **Course Objectives:**

- 1. Acquire a thorough understanding of MEMS products, micro fabrication evolution, and multidisciplinary applications including micro sensors and actuators.
- 2. Gain proficiency in MEMS material selection, fabrication techniques, and micro system packaging design considerations.

Module No.	Syllabus Description	Contact Hours
1	MEMS and Microsystems: Typical MEMS and microsystem products – Evolution of Microfabrication - Microsystem and microelectronics - Multidisciplinary nature of MEMS – Applications of Microsystems in Automotive Industry - Principles and examples of Micro sensors and micro actuators – micro accelerometer, Micro grippers, micro motors, micro valves, micro pumps.	9
2	Actuation and Sensing techniques: Actuation using Thermal forces, Actuation using Shape Memory Alloys, Actuation using Piezoelectric crystals, actuation using Electrostatic forces; Microsensors - Acoustic wave sensors, Biomedical sensors and biosensors, chemical sensors, pressure sensors, optical sensors - microfluidics.	9
3	Engineering science for Microsystem design - Atomic structure of Matter - Ions & ionization - Molecular Theory of matter & Intermolecular forces - Doping of semiconductors - Diffusion process - Electrochemistry - Quantum physics. Materials for MEMS and Microsystems - Substrate and wafer - Silicon as substrate Material - Silicon compounds - Silicon peizoresistors - Gallium Arsenide - Quartz - Peizoelectric crystals - Polymers.	9

	Overview of Microsystem fabrication - Photolithography - Ion implantation-	
	Diffusion - Oxidation - Chemical vapour deposition - Etching. Overview of	
4	Micro manufacturing – Bulk micro manufacturing, Surface micro machining	9
	, LIGA process. Micro system Packaging: general considerations in	
	packaging design – Levels of Micro system packaging.	

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 sub divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic concepts of MEMS and microsystem products.	K2
CO2	Understand the working principles of micro sensors and actuators.	К2
CO3	Identify the typical materials used for fabrication of micro systems.	К2
CO4	Illustrate the various methods in microsystem fabrication and micro manufacturing.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO31	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	2										3
CO3	3	2	1									3
CO4	3	2	1									3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	MEMS and Microsystems Design, Manufacture and Nanoscale Engineering	Tai-Ran Hsu,	Wiley	2 nd , 2020					
2	Foundations of MEMS	Chang Liu	Pearson	2 nd , 2012					
3	Microsystem Design	Stephen D Senturia	Springer	3 rd , 2013					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Silicon VLSI Technology	James D Plummer	Prentice Hall	4 th , 2012						
2	MEMS	Nitaigur Premchand Mahalik	Tata Mc Graw Hill	2013						
3	Micro and Nano Fabrication: Tools and Processes	Hans H. Gatzen	Springer	2015						

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	NPTEL course : "MEMS & Microsystems" by Prof. Santiram Kal, Video Lecture No: 5, MEMS materials https://archive.nptel.ac.in/courses/117/105/117105082/						
2	NPTEL course: "MEMS & Microsystems" by Prof. Santiram Kal, Video Lecture No: 13, Surface & Quartz Micromachining. https://archive.nptel.ac.in/courses/117/105/117105082/						

## **SEMESTER 7**

## ADAPTIVE SIGNAL PROCESSING

Course Code	PEEVT 743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEVT 604	Course Type	Theory

## **Course Objectives:**

- **1.** Explain the role and importance of adaptive signal processing in communications signal processing
- 2. List and apply the various mathematical models to adaptive signal processing

<b>SYLLABUS</b>	\$
-----------------	----

Module No.	Syllabus Description					
1	Adaptive systems: Definitions and characteristics - applications – properties examples - adaptive linear combiner input signal and weight vectors - performance function-gradient and minimum mean square error - introduction to filtering smoothing and prediction - linear optimum filtering-orthogonality - Wiener – Hopf equation-performance surface	9				
2	Searching performance surface-stability and rate of convergence: Learning curve gradient search - Newton's method - method of steepest descent - comparison - Gradient estimation - performance penalty - variance - excess MSE and time constants – mis-adjustments	9				
3	LMS/Newton algorithm - properties - sequential regression algorithm - adaptive recursive filters - random-search algorithms - lattice structure - adaptive filters with orthogonal signals.	9				
4	Applications-adaptive modelling and system identification: Multipath communication channel, geophysical exploration, FIR digital filter synthesis	9				

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module. Total of 8 Questions, each carrying 3 marks	<ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> </ul>	
	(8x3 =24marks)	<ul> <li>Each question can have a maximum of 3 sub divisions.</li> <li>(4x9 = 36 marks)</li> </ul>	60

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Devise filtering solutions for optimising the cost function indicating error in estimation of parameters and appreciate the need for adaptation in design.	K1
CO2	Remember the performance of various methods for designing adaptive filters through estimation of different parameters of stationary random process clearly considering practical application specifications	K2
CO3	Understand convergence and stability issues associated with adaptive filter design and come up with optimum solutions for real life applications taking care of requirements in terms of complexity and accuracy	K1
CO4	Design and implement filtering solutions for applications such as channel equalisation, interference cancelling and prediction considering present day challenges.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3										
CO2	3	3										
CO3	3	3										2
CO4	3	3										

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Adaptive Signal Processing	Bernard Widrow and Samuel D. Stearns	Person Education	1985					

	Reference Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Adaptive Filter Theory	Simon Haykin	Person Education	2003
2	Theory and Design of Adaptive Filters	John R. Treichler, C. Richard Johnson, Michael G. Larimore	Prentice-Hall of India	2002

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://youtu.be/ya0-S1apej8?si=aaGBqDeR13YEa-67			
2	https://youtu.be/xFQsSn0IVUQ?si=hm4Ow6n43XWx0LiR			
3	https://youtu.be/AWcl2as6N1E?si=5dQbSh6smFOJrJn7			
4	https://youtu.be/8fq02jEq2lY?si=aMPFYAdEH97V24xf			

## **SEMESTER S7**

## **HIGH SPEED INTEGRATED CIRCUITS**

Course Code	PEEVT 744	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEVT503 VLSI Technology	Course Type	Theory

#### **Course Objectives:**

- 1. Understand the fundamental principles of high-speed circuit operation, including signal integrity and the impact of transmission lines on high-speed signals.
- 2. Develop the ability to design high-speed digital circuits with a focus on clocking, timing analysis, and interconnect design, while optimizing for low power consumption.
- 3. Gain proficiency in designing high-speed analog components such as amplifiers, comparators, and phase-locked loops, with an emphasis on performance and jitter reduction.
- 4. Acquire knowledge of advanced design techniques for ensuring signal integrity, high-speed memory design, and the testing and verification of high-speed integrated circuits.

Module No.	Syllabus Description	Contact Hours
1	<ul> <li>Fundamentals of High-Speed Circuit Design</li> <li>Introduction to High-Speed ICs: Importance and applications of high-speed circuits in modern technology, Basic principles of high-speed operation.</li> <li>Signal Integrity: Understanding signal degradation, reflections, and crosstalk, Transmission lines and their impact on signal integrity, Impedance matching and termination techniques.</li> <li>High-Speed CMOS Circuits: Overview of CMOS technology for high-speed applications, Speed-power trade-offs and optimizing performance.</li> </ul>	9

	High-Speed Digital Design Techniques	
2	<ul> <li>Clocking and Timing Analysis: Clock distribution networks and clock skew, Setup and hold times, timing margins. Jitter and its impact on timing accuracy.</li> <li>Interconnect Design: On-chip interconnects: RLC effects and delay modelling, Crosstalk minimization and signal buffering, Advanced interconnects: Optical and 3D interconnects.</li> <li>Low-Power High-Speed Design: Techniques for reducing power consumption in high-speed circuits, Voltage scaling, dynamic voltage, and frequency scaling (DVFS), Power gating and multi-Vt techniques.</li> </ul>	9
	High-Speed Analog Design	
3	<ul> <li>High-Speed Amplifiers and Comparators: Design of wideband amplifiers:</li> <li>Gain-bandwidth trade-offs, Current-mode logic (CML) circuits for high-speed applications, Comparator design and optimization for speed.</li> <li>Phase-Locked Loops (PLL) and Clock Recovery Circuits: Basics of PLLs, Operation and applications, Design of PLL components: VCO, frequency dividers, phase detectors. Techniques for jitter reduction in PLLs.</li> <li>High-Speed Data Converters: Overview of ADCs and DACs in high-speed</li> </ul>	9
	applications, Design challenges in high-speed data conversion, Techniques for enhancing the performance of data converters	
	for enhancing the performance of data converters.	
	Madala A. Advanced Transies in High Co., 110 D.	
	Module 4: Advanced Topics in High-Speed IC Design	
	Design for Signal Integrity: Techniques for mitigating signal integrity issues, ESD protection and layout considerations for high-speed ICs, Packaging and PCB considerations in high-speed design.	
4	High-Speed Memory Design: SRAM, DRAM, and non-volatile memory technologies for high-speed applications, Memory interface design and timing considerations, Emerging memory technologies: MRAM, RRAM, etc.	9
	Testing and Verification of High-Speed Circuits: Techniques for testing high-speed digital and analog circuits, Signal integrity testing, eye diagrams, and bit error rate (BER) testing, Design for testability (DFT) and built-in self-test (BIST) methods.	

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks)	<ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks)</li> </ul>	60

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	understand signal integrity issues in high-speed circuits and apply concepts of transmission lines and impedance matching effectively.	K2
CO2	design and optimize high-speed digital circuits, considering timing constraints, power consumption, and interconnect challenges.	K3
CO3	design high-speed analog components, such as amplifiers and PLLs, with a focus on achieving high performance and minimizing jitter.	К3
CO4	apply advanced techniques for ensuring signal integrity, designing high- speed memory systems, and performing thorough testing and verification of high-speed ICs.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1				1	1	
CO2	2	2	2	1	2	1				1	1	1
CO3	2	2	2	1	2	1				2	1	1
CO4	2	3	3	2	1	1				2	1	2

		Text Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages	Brian Young	Prentice Hall Modern Semiconductor Design	2000	
2	Design of High-Performance Microprocessor Circuits	Anantha Chandrakasan, William J. Bowhill, Frank Fox	Wiley-IEEE Press	2000	
3	High Speed Digital Design: A Handbook of Black Magic	Howard Johnson, Martin Graham	Prentice Hall Modern Semiconductor Design	1993	
4	CMOS: Circuit Design, Layout, and Simulation	R. Jacob Baker	IEEE Press Series on Microelectronic Systems	2019	

		<b>Reference Books</b>			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
High-Speed Signaling: Jitter 1 Modeling, Analysis, and Budgeting		Kyung Suk Oh, Xingchao Yuan	Prentice Hall Modern Semiconductor Design Series	2011	
2	Signal Integrity and Radiated Emission of High-Speed Digital Systems	Spartaco Caniggia, Francescaromana Maradei	Wiley	2008	
3	Advanced Signal Integrity for High-Speed Digital Designs	Stephen H. Hall, Howard L. Heck	Wiley	2008	
4	High-Speed Circuit Board Signal Integrity	Stephen C Thierauf	Artech House	2017	

Module No.	Link ID	
1	https://nptel.ac.in/courses/108105375	
2	https://onlinecourses.nptel.ac.in/noc24_ee134/preview	
3	https://archive.nptel.ac.in/courses/117/106/117106030/	
4	https://nptel.ac.in/courses/106103016	

## **SEMESTER 7**

# **EMBEDDED NETWORKS**

Course Code	<b>PEEVT 746</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0: 0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEVT 504	Course Type	Theory

# **Course Objectives:**

1. To understand Basic Network Architectures and familiarize with network protocols

Module No.	Syllabus Description						
1	<ul> <li>Distributed Embedded System- Basic Network Architectures: Client-Server, Peer-to-Peer, Network Topologies, Basic concepts and definitions of LAN, WLAN, WAN &amp;WPAN. OSI and ISO Models in Distributed Embedded Systems. Challenges in Designing Distributed Embedded Systems. Examples and applications of distributed embedded systems.</li> <li>Embedded network protocol CAN- CAN identifier, different layers, bit encoding, message format, Bus length, baud rate, Arbitration mechanism, Error control, Controller Architecture, Applications, and examples.</li> </ul>	7					
2	Ethernet protocol: Networking Devices-Routers, switches, hubs, and bridges, Ethernet protocol- Features, Frames, MAC, CSMA/CD -Principle, Back-off mechanisms. Internet protocol- Higher level protocols -TCP and UDP, IP packet structure- IPv4 and IPv6, Wireless LAN Configurations -Single-cell and multicell, Infrastructure and AdHoc mode, IEEE 802.11 MAC protocol.						

	Nomadic Access- IEEE 802.11k.	
	Bluetooth Protocol: Bluetooth Architecture, Bluetooth network topologies	
	-Piconet and Scatternet. Bluetooth WPAN protocols- LMP and L2CAP,	
	Bluetooth packet format-Classic packet & BLE format. Polling mechanism,	
	Establishing a connection, Power saving modes, Bluetooth applications,	
	Overview of Mobile Ad hoc networks (MANETs) & Vehicular Ad Hoc	
	Networks (VANETs).	
	Sensor networking: Wireless sensor networks - Introduction -	
	School networking. Whereas school networks = information = $\frac{1}{2}$	
	Applications – Network Topology – Localization – Time Synchronization -	
	Energy efficient MAC protocols -SMAC - Energy efficient and robust	
	routing – Data Centric routing.	
3	Operating system basics: Functions of OS, Kernel, types of operating	7
	systems. Introduction to Real-time operating systems:	
	Tasks, process, threads, multiprocessing and multitasking, task scheduling,	
	task communication.	
	Introduction to IoT and IoT networking: devices vs. computers, technical	
	building blocks, Basics of IoT networking, M2M area network, Modbus,	
4	ZigBee-Zigbee Architecture- LoRaWAN -Standardization and Alliances.	7
	<b>Introduction to cloud computing</b> : Data Collection, storage, and computing using a Cloud Platform (Basics Only).	

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A		Part B	
•	2 Questions from each module.	s from each module. • Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	
		• Each question can have a maximum of 3 sub-	00
		divisions.	
(8x3 =24marks)		(4x9 = 36  marks)	

#### **Course Outcomes (COs)**

At the end of the course, students should be able to:

	Course Outcome				
CO1	Understand basic distributed embedded systems architectures, topologies, and protocols.	K2			
CO2	Understand the architectures, and principles of operation of ethernet, IP, and Bluetooth.	K2			
CO3	Understand the concepts of sensor networking and RTOS	K2			
CO4	Comprehend the concepts of IOT networking and cloud computing	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

#### **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	3								2
CO2	3	2	3	3								2
CO3	3		3	3								2
CO4	3	2	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Embedded Systems Design: A Unified Hardware/Software Introduction.	Frank Vahid, Tony Givargis	John & Wiley Publications	2002					
2	"Protocols and Architectures for Wireless Sensor Networks"	Holger Karl and Andreas Wiilig	John Wiley & Sons Limited 2008	2008					
3	Operating systems Concepts	Abraham Silber Chatz, Peter Baer Galvin, Greg Gagne	Wiley Publications						
4	Internet of Things -Architectures and Design Principles	Raj Kamal	MacGraw Hill India Private Limited						

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Embedded Ethernet and Internet Complete	Jan Axelson	Penram Publications, 2003.	2003				
2	"A Survey on Sensor Networks",	I.F. Akyildiz and Weillian	IEEE Communication Magazine	Aug 2007				
3	Embedded systems an integrated approach	Lyla B Das	pearson	Ist edn				
3	IoT fundamentals- networking technologies, protocol, and use cases.	David Hanes, Gonzalo Salgueiro et al.	Cisco Press	2017				
4	Computers as Components: Principles of Embedded Computing System Design.	Wayne Wolf	Morgan Kaufman Publishers - Elsevier	3ed 2008				
Video Links (NPTEL, SWAYAM)								
-----------------------------	--------------------------------------------------------------------------	--	--	--	--	--		
Module No.	Link ID							
1	https://archive.nptel.ac.in/courses/106/105/106105193/							
2	https://nptel.ac.in/courses/108105057							
3	https://onlinecourses.nptel.ac.in/noc24_cs24/preview							
4	https://youtube.com/playlist?list=PLDD18E950D85E018C&si=6wnLOHy0GarETWi1							

# **FLEXIBLE ELECTRONICS**

Course Code	<b>PEEVT 747</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Solid State Devices	Course Type	Theory

### **Course Objectives:**

- 1. Identify the advantages, drawbacks, performances, complementarity, and uniqueness of large area manufacturing vs. silicon technology
- 2. Integrate the operation principles, architectures, and processing of main devices and systems fabricated for flexible electronics.
- 3. Predict systems integration issues and propose methods for integration and encapsulation of printed devices and systems.

Module No.	Syllabus Description			
1	Introduction to Flexible and Printed Electronics: Evolution of Flexible Electronics, review of cutting edge research on electronics that can be flexible, plastic, stretchable, conformable or printed. Electronic materials, components, and systems, applications for IoT.	9		

2	Materials, Processing, and Manufacturing: Various semiconductors, dielectric, and conducting materials, Organic semiconductors, from chemical bonds to bands, Charge injection and transport, Examples of printable functional materials, Thin-film Deposition and Processing Methods for Flexible Devices, Solution-based Patterning Processes; Ink-jet printing, gravure, and other processes, surface energy effects, multilayer patterning	9
3	Flexible Thin-Film Transistors and Circuits: Thin-Film Transistor; Device structure and performance, Electrical characteristics, parameter extraction, characterization methods for rigid and flexible devices, electrical stability, printed transistors; organic/polymer, metal-oxide, electrolyte gated	9
4	Other Flexible Devices and System Integration: Organic Light Emitting Diodes, Organic Solar Cells, thin flexible OLED displays, OLED lighting, smart wallpaper, sensors, logic, and memory, RFID tags, Latest applications of printed electronics, Encapsulation, Roll to roll printing processes, Integration Issues, and Designs for the Future.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

#### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
	• 2 Questions from each module.	• Each question carries 9 marks.	
•	• Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	00
	(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome				
CO1	Familiarize the flexible and printed electronics technology	K2			
CO2	Understand the materials, processing and manufacturing methods for flexible devices	K2			
CO3	Analyse the flexible thin film transistor's device structure and characterization	K4			
CO4	To understand the latest applications of fexible printable devices	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	2									

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Organic and Printed Electronics: Fundamentals and Applications	G. Nisato, D. Lupo, S. Ganz	CRC Press	2016				
2	Handbook of Flexible and Stretchable Electronics	M. M. Hussain and N. El- Atab	CRC Press	2020				
3	3D Bioprinting Revolution	Sabrie Soloman	Khanna Publishing house	2020				

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Large Area and Flexible Electronics	Mario Caironi & Yong- Young Noh	WILEY-VCH	2015				
2	Flexible electronics: materials and applications	Wong, William S., and Alberto Salleo	Springer	2009				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://youtu.be/YoslM2Sxihs?si=02yozFsifxWfsYQH					
2	https://youtu.be/YoslM2Sxihs?si=HD8mG5nR9XuUMUgB					
3	https://youtu.be/KtKG_rIPbVs?si=xuOHyOLjNQCfzNm5					
4	https://youtu.be/MC1zGEmrELA?si=erqi_zobzrhiMf3D					

Course Code	PEEVT 745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PCECT302 Solid State Devices	Course Type	5 Credit Elective

### **POWER-EFFICIENT VLSI ENGINEERING**

#### **Course Objectives:**

- 1. To equip students with a comprehensive understanding of power dissipation mechanisms in MOSFET devices, the necessity for low-power circuit design, the challenges associated with deep submicron transistor design, and the exploration of emerging low-power technologies
- 2. To enable students to analyse the various sources of power dissipation in digital ICs, including dynamic, short circuit, switching, glitching, and static power, and to understand the impact of design parameters on power efficiency.
- **3.** To provide students with an in-depth understanding of low-power design approaches, including supply voltage scaling, architectural techniques, and advanced methods for reducing leakage power and improving clock distribution efficiency.
- 4. To equip students with the knowledge of various low-power circuit design styles, including non-clocked and clocked approaches, adiabatic switching, and energy recovery techniques, to minimize power consumption in VLSI circuits.

Module No.	Syllabus Description	Contact Hours
1	Physics of Power dissipation in MOSFET devices Need for low power circuit design, MIS Structure	9
	Deep submicron transistor design issues: Short channel effects	
	Channel Length Modulation , Surface scattering, Punch through, Velocity	

	saturation, Impact ionization, Hot electron effects, Body Effect, Narrow width	
	effect, Vth roll-off, Drain Induced Barrier Lowering, Gate Induced drain	
	leakage, Tunneling Through Gate Oxide, Subthreshold Leakage Current,	
	Emerging Technologies for Low Power:	
	Hi-K Gate Dielectric, Lightly Doped Drain–Source, Silicon on Insulator	
	Sources of power dissipation in digital ICs –	
	Dynamic Power Dissipation:	
	Short Circuit Power: Short Circuit Current of Inverter, Short circuit current	
	dependency on input rise and fall time, Variation of shortcircuit current with	
	load capacitance.	
2	Switching power dissipation: Switching Power of CMOS Inverter, Switching	9
	activity and its effects.	
	Glitching Power: Glitches and its effect on power dissipation	
	Sittening I ower. Onceles and its effect on power dissipation	
	Static Power Dissipation:	
	Sources of Leakage Power, Effects of $V_{dd}$ and $V_t$ on speed, Constraints on	
	V _t Reduction.	
	Low-Power Design Annrogches-	
	Low-rower Design Approaches-	
	Supply Voltage Scaling for Low Power:	
	Effect of Supply voltage on Delay and Power	
	Effect of Supply voltage on Static and Dynamic Power	
2	Multi VDD ,Dynamic VDD, Dynamic Voltage and Frequency Scaling	0
3	(DVFS) Approaches.	9
	Architectural Level Approaches: Pipelining and Parallel Processing	
	Leakage power reduction Techniques:	
	Effect of threshold voltage on Leakage Power Transistor stacking,	
	MTCMOS, VTCMOS Power gating& Clock gating Techniques. Power-	
	Efficient Clock Distribution	

	Circuit Design Styles for Low Power-	
	Non clocked circuit design style: Fully Complementary logic. NMOS and Pseudo –NMOS logic, Differential Cascode Voltage Switch logic(DCVS)	
4	<b>Clocked design style:</b> Basic concept, Dynamic Logic, Domino logic, Differential Current Switch Logic.	9
	Adiabatic switching – Adiabatic charging, Adiabatic amplification, Adiabatic logic gates, Pulsed power supplies.	
	Energy Recovery Circuit Techniques	

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

#### Criteria for Evaluation (Evaluate and Analyse): 20 marks

#### 1. Literature Review and Report (10 Marks)

#### **Assessment Method:**

- Students select recent publications on a specific topic related to the course (eg. Hi-K Gate Dielectrics).
- Preparation of a report summarizing the findings, discussing the significance, and proposing future research directions.

#### Criteria:

- Relevance of Chosen Publications (2 Marks): Selection of up-to-date and significant research papers.
- Depth of Analysis (4 Marks): Thorough understanding and critical analysis of the literature.
- Clarity and Organization (2 Marks): Well-structured report with clear arguments.
- Originality (2 Marks): Innovative insights or perspectives.

#### 2. Design Exercise (5 Marks)

#### Assessment Method:

- Design a basic adiabatic logic gate (e.g., AND, OR, XOR) using a simulation tool such as Cadence or HSPICE, simulate the circuit, analyze the power consumption, and compare it with a conventional CMOS logic gate.
- Preparation of a detailed report.

#### Criteria for Assessment (Total: 5 Marks):

- Correctness of the Design (2 Marks):
  - The logic gate must function correctly, with accurate simulation results that match the expected logical behavior.
- Power Consumption Analysis (2 Marks):
  - Students should provide a comparative analysis showing how the adiabatic logic gate consumes less power compared to a traditional CMOS gate. This should include quantitative data from the simulation.
- Clarity and Completeness of the Report (1 Mark):
  - A concise report detailing the design process, simulation setup, results, and conclusions. The report should be well-organized and clear, making it easy to follow the student's work.
- 4. Case Study Analysis (5 Marks)

#### Assessment Method:

**Task**: Students will be given a case study that involves a complex CMOS circuit. They will be required to identify and analyze the sources of switching power dissipation within the circuit, propose optimization techniques, and predict the potential power savings.

#### Criteria for Assessment (Total: 5 Marks):

- Identification of Switching Power Sources (2 Marks):
  - Accurate identification of all key areas within the CMOS circuit where switching power dissipation occurs.
- Proposed Optimization Techniques (2 Marks):
  - Thoughtful and feasible suggestions for minimizing switching power dissipation, including explanations of how these techniques would work in the given circuit.
- Predicted Power Savings and Justification (1 Mark):
  - A reasoned estimation of the potential power savings from the proposed optimizations, supported by logical arguments or simple calculations.

#### End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions, each	Each question can have a maximum of 3 sub	60
carrying 3 marks	divisions. Each question carries 9 marks.	00
(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse and evaluate power dissipation mechanisms in MOSFET devices, understand the need for low-power design, identify deep submicron transistor design challenges, and apply emerging technologies to optimize power efficiency in VLSI circuits.	K3
CO2	Identify and quantify various sources of power dissipation in digital ICs, including dynamic, short circuit, switching, glitching, and static power, and evaluate strategies for optimizing power consumption.	K2
СО3	Apply various low-power design approaches, including supply voltage scaling, architectural optimizations, and leakage power reduction techniques, to enhance power efficiency in VLSI circuits.	К3
CO4	Design and evaluate low-power circuits using various design styles, including non-clocked and clocked approaches, adiabatic switching, and energy recovery techniques, to effectively reduce power consumption in VLSI systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		1				1	1		
CO2	3	2	2	2	1				1	1		
CO3	3	3	3		2				1	1		
CO4	3	2	3	2	2				1	1		

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw-Hill	2/e, 2002			
2	CMOS: Circuits Design, Layout and Simulation,	Baker, Li, Boyce,	Prentice Hall India,	1994			
3	Microelectronic Circuits	Sedra & Smith	Oxford University Press	6/e,2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	CMOS Analog Circuit Design,	Phillip E. Allen, Douglas R. Holbery	Oxford University Press	3/e				
2	Fundamentals of Microelectronics	Behzad Razavi	Wiley student Edition	2014				
3	Analysis and Design of Analog Integrated Circuits	Meyer Gray , Hurst, Lewis	Wiley	5/e, 2009				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234					
2	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234					
3	www.youtube.com/@b_razavi, www.youtube.com/@analogicdesign-iitm5234					
4	Switching Circuits and Logic Design by Prof. Indranil Sengupta Lectures 47-51					

### **SEMESTER 7**

# **RF MICROELECTRONICS**

Course Code	PEEVT 751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

### **Course Objectives:**

#### This Course aims

- 1. To provide an overview of passive components and lumped elements circuits.
- 2. To understand the fabrication of microwave integrated circuits.
- **3.** To study various planar transmission lines.

Module No.	Syllabus Description					
1	Introduction to Passive Components, Inductors- printed inductors, wire inductors, resistors, capacitors, Monolithic capacitors, Via –holes and grounding. (No detailed analysis required). Lumped element circuits: Passive Circuits-filters and Couplers, Power dividers/ Combiners, Lumped Elements for biasing circuit, Phase Shifters, Digital Attenuators. (No detailed	9				
2	Analysis required) Microwave integrated circuit fabrication technology Introduction - Materials, Mask layout, Mask fabrication, Printed Circuit	9				
	Boards- PCB Fabrication, PCB Inductors. Microwave Printed Circuits - MPC fabrication.					

	Hybrid integrated circuits	
3	Thin Film Technology, Thick film Technology- Coirfed Ceramic and Glass ceramic Technology. MMIC Fabrication, Steps Involved in the Fabrication of MOSFET, CMOS Fabrication, Micromachining fabrication.	9
4	Microstrip overview Introduction to Planar Transmission Line, Various types of planar transmission lines. Microstrip Lines, Introduction to Slot line and Coupled lines.	9

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module. Total of 8 Questions, each carrying 3 marks	<ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> </ul>	60
	(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Discuss about the RF components and circuits.	K2
CO2	Explain about PCB fabrication.	K2
CO3	Understand MMIC Technology	K2
CO4	Explain about Microstrip Lines	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	2										2
CO3	3	2										2
CO4	3	2										2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Radio Frequency Integrated Circuits and Technologies	Frank Ellinger	Springer	2007				
2	Lumped Elements for RF and Microwave Circuits	Inder Bahl	Artech House	2003				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	RF Microelectronics	B.Razavi	Prentice-Hall PTR	1998			
2	Microwave Integrated Circuits	Gupta K. C. &Amarjit Singh	John Wiley & Sons	1975			
3	RFIC and MMIC Design and Technology	I.D Robertson,C .Lucyszyn	The Institution of Engineering and Technology	2001			
4	Passive RF & Microwave Integrated Circuits	Leo G. Maloratsky	Elsevier	2004			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://youtu.be/cHbcdk-C4Zo?si=MAMALiV4ffGdQOAO				
2	https://youtu.be/pgcqahZEdpY				
3	https://youtu.be/lW0QMvmeVGs?si=lTNG13H6s1JyIp				
4	https://youtu.be/ap9739K_OJo				

# **INTERNET OF THINGS**

Course Code	PEECT 752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

1. This course aims to introduce IoT fundamentals.

Module No.	Syllabus Description	Contact Hours
	Introduction to IoT technology: Definitions of IoT, Characteristics of IoT	
	devices - power, computational constraints, IoT Architectural view -	
	Middleware based architecture, Service oriented architecture, M2M	
1	Communication and IoT, Typical application areas of IoT technology (case	
	studies of at least four domains) - Energy management and Smart grid, IoT	9
	for Home, Cities, Environment monitoring, Agriculture, Supply chain and	
	customer monitoring	
	Components of IoT technology: Identification/Addressing - Electronic	
	Product Codes, RFID, ubiquitous code, IPv4, IPv6. Sensors and Actuators*.	
2	IoT Hardware**, IoT Software – overview of Operating systems, Firmware,	
	Middle ware, Application software used in IoT. Connectivity for IoT	9
	devices – characteristics.	
	Communication technologies for IoT : Zigbee - key features, architecture,	
	limitations, Bluetooth technology - bluetooth stack, piconet, scatternet,	
	limitations, Bluetooth Low Energy (key features, architecture, limitations),	
	Wifi (IEEE 802.11) technology – key features, limitations, Cellular	
3	technology - GSM, 3G, 4GLTE (overview), features, limitations, LoRa	9
	technology – features, LoRaWAN architecture, 6LoWPAN – features,	
	protocol stack, Narrow Band (NB- IoT) - features, applications, Sigfox -	
	features, applications	

	IoT Data Management : Storage technologies for IoT hardware – Volatile,	
	Non-volatile, Embedded (MTP/OTP), external flash (NAND/NOR),	
	DRAM, eflash, UFS, eMMC (overview of technologies). Cloud and IoT,	
	Cloud computing - architecture, advantages of cloud computing, Software	
4	as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service	9
	(IaaS). Case study of commercial cloud computing platforms like -	
	Microsoft Azure IoT Suite, Google Cloud's IoT Platform, IBM Watson IoT	
	Platform. IoT analytics	
		1

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module.	• Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	
		• Each question can have a maximum of 3 sub divisions.	60
(8x3 =24marks)		(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain in a concise manner the architecture of IoT	К2
CO2	Identify various hardware and software components used in IoT	K3
CO3	Discuss the various communication technologies and interfaces in IoT	K2
604	Describe the usage of modern technologies like cloud computing for data	К2
04	management in IoT	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								2
CO2	3	2	2	2								2
CO3	3	2	2	1								2
CO4	3	2	2	1								2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things : Architecture and Design Principles"	Rajkamal	McGraw Hill (India) Private Limited.	2nd edition,2022		
2	"Internet of Things (A Hands-on- Approach)"	Vijay Madisetti and Arshdeep Bahga	Orient Blackswan Private Limited - New Delhi	1st Edition,2015		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of things: A survey on enabling technologies, protocols, and applications	Al-Fuqaha	IEEE Communications Surveys & Tutorials	2015		
2	The Internet of Things	Samuel Greengard	The MIT Press Essential Knowledge series Paperback	March 20, 2015		
3	The Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems	Ovidu Vermesan and Peter Friess	River Publishers	1st Edition, 2013		
4	. Internet of Things - From Research and Innovation to Market Deployment	Peter Friess, Ovidiu Vermesan	River Publishers	1 st Edition,2014		

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://youtu.be/WUYAjxnwjU4?si=s58W-NKMrEQMaJ8m					
	https://youtu.be/BXDxYh1EV2w?si=8oFtQB9vycC_c-t2					
	https://youtu.be/z3VEZPwl5gA?si=tNuzG_By-KBU3ks_					
2	https://youtu.be/SXz0XR68dwE?si=1tVN1g9FQcGp87li					
	https://youtu.be/TvzgzO6xKrY?si=gYzJstW51MTNsgKj					
	https://youtu.be/qko-f1VDhCM?si=0tWM_OHS395ESV_w					
3	https://youtu.be/d9QfVpCG00Y?si=qeHk8tPg_torr2yX					
	https://youtu.be/1zQ8wbBozqI?si=7vOSHMt8OT3nQINO					
1	https://youtube.com/playlist?list=PLE7VH8RC_N3bpVn-					
-	e8QzOAHziEgmjQ2qE&si=rr5Fpuew5q9_Y4qg					

# ELECTROMAGNETIC COMPATIBILITY AND SIGNAL INTEGRITY

Course Code	PEEVT753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

### **Course Objectives:**

1. To provide an understanding of important concepts of Electromagnetic Compatibility which are fundamental for the design of electronics systems and devices in order to minimize electromagnetic interference.

Module No.	Syllabus Description				
	Introduction to Aspects of EMC: EMI Sources, EMC units, Signalsource				
1	specification, Advantages of EMC Design, EMC Requirements for Electronic	8			
	Systems, Measurement of Radiated and Conducted Emissions.				
	Signal Integrity: Transmission-Line Equations, High-Speed Digital				
	Interconnects, Effect of Terminations, Matching Schemes, Effects of				
2	LineDiscontinuities. Non-ideal Behaviour of Components: Wires,	10			
	resistors, capacitors, inductors, Printed Circuit Board (PCB), Effect of				
	Component, Leads, Mechanical Switches				
	Conducted Emissions and Conducted Susceptibility: Measurement, Power				
	Supplies, Filters, Placement. Radiated Emissions andConducted				
3	Susceptibility: Simple Emission Models for Wires and PCBLands, Simple	8			
	Susceptibility Models for Wires and PCB Lands				
	Crosstalk: Three-Conductor Transmission Lines and Crosstalk,				
	ShieldedWires, Twisted Wires. Shielding: Shielding Effectiveness- Far-				
Δ	FieldSources, Near-Field Sources; Low Frequency, Magnetic Field Shielding	9			
-	System Design for EMC: Common EMC Issues in Practice and Design				
	Guidelines				

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out	
•	Total of 8 Questions, each		of which 1 question should be answered.	60
	carrying 3 marks	•	Each question can have a maximum of 3 sub	00
			divisions.	
	(8x3 =24marks)		(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Implement the various measurement techniques for electromagnetic interference and for electromagnetic compatibility	K3
CO2	Recognize the various agencies and standards associated with EMI/EMC	K2
СО3	Analyse various EM compatibility issues with regard to the design of PCBs and ways to improve the overall system performance	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2							3		3
CO2	3	3	2							3		2
CO3	3	3	3							3	3	3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introductionto Electromagnetic Compatibility	C. R. Paul	John Wiley & Sons	3 rd Edition,202 2						
2	Electromagnetic Compatibility Engineering	H. W. Ott	John Wiley & Sons	2 nd Edition, 2009						
3	Engineering EMC Principles, Measurementsand Technologies,	V. P. Kodali	Wiley-Blackwell	2 nd Edition, 2001						

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Electromagnetic Compatibility in Medical Equipment	W. D. Kimmel and D. Gerke	IEEE&Interpharm Press	1995					

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/108/106/108106138/								
2	https://onlinecourses.nptel.ac.in/noc24_ee67/preview								
3	https://archive.nptel.ac.in/content/syllabus_pdf/108106138.pdf								
4	https://www.digimat.in/nptel/courses/video/108106138/L28.html								

# **INFORMATION THEORY & CODING**

Course Code	PEEVT754	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Linear Algebra and Calculus, Probability, Random Process and Numerical Methods,	Course Type	Theory
	Signals and Systems.		

### **Course Objectives:**

- 1. To lay down the foundation of information theory introducing both source coding and channel coding
- 2. To expose students to algebraic and probabilistic error-control codes that are used for reliable transmission

Module No.	Syllabus Description	Contact Hours		
	Entropy, Properties of Entropy, Joint and Conditional Entropy, Mutual			
	Information, Properties of Mutual Information.			
	Discrete memoryless sources, Source code, Average length of source code,			
1	Bounds on average length, Uniquely decodable and prefix-free source codes.	9		
	Kraft Inequality (with proof), Huffman code. Shannon's source coding			
	theorem (both achievability and converse) and operational meaning of			
	entropy.			
	Discrete memoryless channels. Capacity of discrete memoryless channels.			
	Binary symmetric channels (BSC), Binary Erasure channels (BEC). Capacity			
	of BSC and BEC. Channel code. Rate of channel code. Shannon's channel			
	coding theorem (both achievability and converse without proof) and			
2	operational meaning of channel capacity.			
	Modeling of Additive White Gaussian channels. Continuous-input channels			
	with average power constraint. Differential entropy. Differential Entropy of			
	Gaussian random variable. Relation between differential entropy and			
	entropy. Shannon-Hartley theorem (with proof - mathematical subtlities			

	regarding power constraint may be overlooked).				
	Inferences from Shannon Hartley theorem - spectral efficiency versus SNR				
	per bit, power-limited and bandwidth-limited regions, Shannon limit,				
	Ultimate Shannon limit.				
	Overview of Groups, Rings, Finite Fields, Construction of Finite Fields from				
	Polynomial rings, Vector spaces.				
	Block codes and parameters. Error detecting and correcting capability.				
3	Linear block codes. Two simple examples Repetition code and single				
	parity-check code. Generator and parity-check matrix. Systematic form.				
	Maximum likelihood decoding of linear block codes. Bounded distance				
	decoding. Syndrome. Standard array decoding.				
	Cyclic codes. Polynomial and matrix description. Interrelation between				
	polynomial and matrix view point. Systematic encoding. Decoding of cyclic				
	codes. (Only description, no decoding algorithms) Hamming Codes, BCH				
	codes, Reed-Solomon Codes				
4	Convolutional Codes. State diagram. Trellis diagram. Maximum likelihood				
1	decoding. Viterbi algorithm.				
	Low-density parity check (LDPC) codes. Tanner graph representation.				
	Message-passing decoding for transmission over binary erasure channel.				
4	parity-check code. Generator and parity-check matrix. Systematic form. Maximum likelihood decoding of linear block codes. Bounded distance decoding. Syndrome. Standard array decoding. Cyclic codes. Polynomial and matrix description. Interrelation between polynomial and matrix view point. Systematic encoding. Decoding of cyclic codes. (Only description, no decoding algorithms) Hamming Codes, BCH codes, Reed-Solomon Codes Convolutional Codes. State diagram. Trellis diagram. Maximum likelihood decoding. Viterbi algorithm. Low-density parity check (LDPC) codes. Tanner graph representation. Message-passing decoding for transmission over binary erasure channel.	9			

# Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain measures of information – entropy, conditional entropy, mutual information	K2
CO2	Apply Shannon's source coding theorem and channel capacity for data compression.	К3
CO3	Apply linear block codes for error detection and correction	K3
CO4	Apply algebraic codes with reduced structural complexity for error correction	К3
CO5	Understand encoding and decoding of convolutional and LDPC codes	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

<b>CO-PO</b> Mapping	y Table (Mapping	g of Course Outcomes to	Program Outcomes)
	s rubic (Frupping	S of Course Outcomes to	, i i ogi ann o accomes,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3	2	3	3							
CO3	3	3	2	3	3	2						2
CO4	3	3	2	3	3	2						2
CO5	3	3	2	3	3	2						2

	Text Books									
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year						
1	Elements of Information Theory.	Joy A Thomas, Thomas M Cover,	Wiley-Interscience	1st						
2	Digital Communication Sysmtes	vigital Communication ysmtes Simon Haykin,		2nd						
3	Principles of digital communication	RG Gallager	Cambridge University Press	2010						
4	Information Theory, Inference and Learning Algorithms", ,	David JC McKay	Cambridge University Press	1st						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Modern Coding Theory	Rüdiger Urbanke and TJ Richardson	Cambdridge University Press	1st					
2	ErrorControlCoding:FundamentalsandApplications,	Shu Lin & Daniel J. Costello. Jr.,	Wiley	2nd Edition.					
3	Introduction to Coding Theory	Ron M Roth	Cambrdige University Press	1st					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/117101053					
2	https://nptel.ac.in/courses/117108097					
3	https://archive.nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee39/					
4	https://archive.nptel.ac.in/courses/117/104/117104120/					

# **OPTOELECTRONIC DEVICES**

Course Code	PEEVT 756	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

### **Course Objectives:**

1. To provide an insight over the working principles and performance parameters of various optoelectronics devices used for optical networks and communication

Module No.	Syllabus Description	Contact Hours
1	Fundamentals of Semiconductor Optoelectronics Optical processes in semiconductors: electron-hole generation and recombination, Absorption, Auger recombination, Heat generation and dissipation, Heat sources.Various light production mechanisms,Indirect band gap materials, Semiconductors used for optical Applications, Basic principle of LED and LASER, Spontaneous emission and Stimulated Emission, Coherence of sources.	9
2	<b>Optical Sources</b> Construction and Operation of LEDs, Heterojunctios, Surface Emitter and Edge Emitter LEDs, Characteristics of LEDs, LASERs, Threshold Condition for lasing, Line Broadening Mechanisms, Fabry-Perot Lasers, Distributed Feedback(DFB) Lasers, Distributed Bragg Reflector(DBR) Lasers, Vertical Cavity Surface Emitting Lasers (VCSELs), In-Fibre Lasers.	9

3	<b>Optical Detectors</b> Principle of Photo Detection, Working of LDR, PN diode, PIN diode, Avalanche Photodiode (APD), Characteristics of APD, Resonant Cavity Photo detector, Photo Transistor, Quantum efficiency, Responsivity, Noise in Photo detectors, Thermal Noise, Dark Current, Shot Noise, Quantum limit of Optical Detection.	9
4	<b>Optoelectronic Devices and Modulator</b> Optoelectronic ICs, Advantages, Liquid Crystal Display, Structure, TFT display, Structure, Polymer LED, Organic LED, Optical Modulators using PN junction, Electro-Optic Modulators, Acousto-Optic Modulators, Raman-Nath Modulators, Optical switching and Logic devices,Optical Memory. Solar Cells: basic working principle, VI Characteristics, Different types of solar cells, Dye sensitized solar cells (DSSC), Perovskite Solar cells.	9

## Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module.	• Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	00
	(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand physics of optical processes in semiconductors.	K2
CO2	Distinguish different optical sources used in optoelectronic applications.	K3
CO3	Analyse different types of photo detectors based on their performance parameters	К3
CO4	Explain various optical modulators and optoelectronic devices.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3											2
CO3	3		2		2							2
CO4	3		2		2							2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Light Sources and Lasers	Mark Csele,	Wiley-Interscience,	2004				
2	Solid State Lasers	W.Koechner,M.Bass	Springer,	2003				
3	Photonics Optical Electronics in modern communication	Yariv,	Oxford University Press,	6/e , 2006.				
4	Understanding Optical Communications,	Harry J R Dutton	IBM	1/e 1998				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Organic Light-Emitting Diodes,	Alastair Buckley	Woodhead,	2013 6,			
2	Solar Cell Device Physics	Stephen J Fonash	Elsevier	2/e, 2010			

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/113/104/113104012/						
2	https://archive.nptel.ac.in/courses/115/102/115102026/						
3	https://www.youtube.com/watch?v=WWjldCmRteg						
4	https://archive.nptel.ac.in/courses/113/106/113106065/						

# VLSI ARCHITECTURES FOR DSP

Course Code	PEEVT 757	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	VLSI	Course Type	Theory

### **Course Objectives:**

- 1. Equip students with the ability to represent DSP algorithm Representations and Techniques
- 2. Develop student's proficiency in designing and implementing pipelined and parallel processing structures for DSP applications
- 3. Enable students to apply retiming and transformation techniques:
- 4. Train students to analyze and compute scaling and round-off noise in digital filters.

Module No.	Syllabus Description	Contact Hours					
	Representations of DSP algorithms - Block Diagram, Signal Flow Graph,						
	Data Flow Graph, Dependence Graph. Loop Bound & Iteration Bound,						
1	Definition, Examples, Algorithms for Computing Iteration Bound – Longest	9					
	Path Matrix Algorithm, Minimum Cycle Mean Algorithm, Iteration Bound						
	of Multirate Data-Flow Graphs.						
	Pipelining and Parallel Processing - Pipelining of FIR Digital Filters, Data-						
	Broadcast Structures, Fine-Grain Pipelining. Parallel Processing, Pipelining,						
_	and Parallel Processing for Low Power.						
2	Retiming: Definition and Properties, Solving System of Inequalities,	9					
	Retiming Techniques- Cutset Retiming and Pipelining, Retiming for Clock						
	Period Minimization, Retiming for Register Minimization						

3	<ul><li>Unfolding: Properties of Unfolding, Critical Path, Unfolding and Retiming,</li><li>Application of Unfolding, Sample Period Reduction, Parallel Processing.</li><li>Folding: Introduction to Folding Transformation, Register Minimization</li><li>Techniques, Register Minimization in Folded Architectures, Folding in</li><li>Multirate Systems.</li></ul>	9
4	Scaling and round off noise – scaling and round off noise, state variable description of digital filters, scaling and round off noise computation, round off noise in pipelined IIR filters, Round off noise omputation using state variable description, slow down, retiming and pipelining	9

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total	
5	15	10	10	40	

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module.	• Each question carries 9 marks.	
•	Total of 8 Questions, each	• Two questions will be given from each module, out of	
	carrying 3 marks	which 1 question should be answered.	60
		• Each question can have a maximum of 3 sub divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)			
	Represent DSP algorithms using block diagrams, signal flow graphs,				
CO1	data flow graphs, and dependence graphs, and analyze iteration	K3			
	bounds using relevant algorithms.				
	Demonstrate the ability to design, implement, and optimize pipelined				
	and parallel processing structures for DSP systems, including FIR				
CO2	digital filters and data broadcast structures, focusing on low-power	K4			
	solutions.				
	Apply retiming techniques to minimize clock periods and registers				
CO3	and use unfolding and folding transformations to optimize DSP	K6			
	architectures.				
	Become Proficient in evaluating and mitigating scaling and round-off				
CO4	noise in digital filters, particularly in pipelined IIR filters, using state	К5			
	variable descriptions and related computation techniques.				
	Design efficient DSP architectures by integrating knowledge of				
CO5	algorithm representations, pipelining, parallel processing, retiming,	K6			
	and noise mitigation techniques.				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

**CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)** 

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	1							
CO2	3	3	3	2	2	1						
CO3	3	3	2	3	2	1						
CO4	2	3	2	3	1	1						
CO5	3	3	3	3	2	2						
Text Books												
------------	------------------------------------------------------------------	---------------------------------------	---------------	---------------------------	--	--	--					
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year								
1	VLSI DSP Systems- Design and Implementation	Keshab K Parhi	John Wiley	1 st Edn 1999.								
2	Digital Signal processing for multimedia systems	Keshab K Parhi and Takao Nishitami	CRC press	2018								
3	Digital Signal Processing with Field Programmable Gate Arrays	Uwe Meyer-Baese	Springer	4 th Edn, 2014								
4	VLSI Design Methodology Development	Thomas Dillinger	Prentice Hall	1 st Edn 1998								
5	Advanced Digital Signal Processing and Noise Reduction	Saeed V. Vaseghi	Wiley	4 th Edn 2008								

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Understanding digital signal processing	Richard G Lyons	Pearson Education India	3,1997			
2	DSP Integrated Circuits	Lars Wanhammar	Academic Press	1 st Edn 1999			
3	Digital Filter Design	T. W. Parks and C. S. Burrus	Wiley-Interscience	1 st Edn 1987			
4	Architectures for Digital Signal Processing	Peter Pirsch	John Wiley & Sons	1 st Edn 1998			
5	CMOS VLSI Design: A Circuits and Systems Perspective	Neil H. E. Weste and David Harris	Pearson	4 th Edn 2010			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc20_ee44/preview				
2	https://www.youtube.com/playlist?list=PLT1QAv48lhQKwFZ0TkqpJaUm2LeW9226z				

#### **SEMESTER 7**

# AI AND ML FOR VLSI CAD

Course Code	PEEVT 758	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Machine Learning	Course Type	Theory

#### **Course Objectives:**

- 1. To provide students with a comprehensive understanding of the applications of Artificial Intelligence and Machine Learning in VLSI CAD.
- 2. To introduce students to the concept of Compact Process Models (CPM) in lithographic patterning, enabling them to develop and train machine learning models for accurate representation and optimization of the lithographic process.
- **3.** To equip students with the skills to apply machine learning algorithms for various aspects of physical design, mask synthesis, and physical verification in VLSI, focusing on enhancing efficiency, accuracy, and automation.
- **4.** To train students in using machine learning techniques for yield estimation, reliability analysis, and testing in high-volume VLSI manufacturing, improving process optimization, and reliability prediction.

Module No.	Syllabus Description				
	Introduction to AI and ML in VLSI CAD: Overview of AI and ML applications in VLSI CAD, Unsupervised, Supervised, and Semisupervised				
	Learning, Introduction to neural networks and decision trees Introduction to VLSI Design Methodologies: VLSI Design Cycle -				
	Physical Design Cycle - Design Styles and comparison of different Design				
1	Machine Learning for Compact Lithographic Process Models:	9			
	Introduction, Lithographic Patterning Process, Representation of Lithographic Patterning Process – Mask, Imaging, Resist & Etch Transfer				
	Function, Compact process model machine learning problem statement, CPM Task, CPM Training Experience, Performance metrics, Supervised				

	learning of a CPM	
2	<ul> <li>Neural Network Compact Patterning Models: Neural Network Mask</li> <li>Transfer Function, Neural Network Image Transfer Function, Neural</li> <li>Network Resist Transfer Function, Neural Network Etch Transfer Function</li> <li>Machine Learning for Mask Synthesis Introduction, Machine Learning</li> <li>guided OPC, MLP Construction, ML-EPC, EPC Algorithm</li> <li>Machine Learning in Physical Verification Introduction, Machine</li> <li>Learning in Physical Verification &amp; encoding,</li> <li>models for hotspot detection.</li> </ul>	9
3	Machine Learning in Mask Synthesis and Physical Design: Machine Learning in Mask Synthesis – mask synthesis flow, Machine Learning for sub-resolution assist features, Machine Learning for optical proximity correction. Machine Learning in Physical Design - for datapath placement, routability driven placement, clock optimization, lithography friendly routing Machine Learning for Manufacturing: Gaussian Process-Based Wafer- Level Correlation Modeling and Its Applications	9
4	<ul> <li>Machine Learning for Yield and Reliability: High-volume manufacturing yield estimation – Histogram with random sampling, Histogram with GPST-PS, Kernel density estimation. Machine learning-based aging analysis.</li> <li>Learning-Based VLSI Test and Verification: VLSI Testing Process, Off-Chip Testing, On-Chip Testing, Combinational Circuit Testing, Sequential Circuit Testing, Advantages of VLSI Testing, Machine Learning's Advantages in VLSI Design, Ease in the Verification Process, Time-Saving, 3Ps (Power, Performance, Price), Electronic Design Automation, System-Level Design, Logic Synthesis and Physical Design, Test, Diagnosis, and Validation, Verification, Challenges</li> </ul>	9

# Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply AI and ML concepts to VLSI CAD problems	K3
CO2	Develop and train machine learning models for lithographic process modeling	K6
CO3	Implement machine learning algorithms for physical design automation and verification	К3
CO4	Analyze machine learning-based solutions for yield estimation and reliability in VLSI manufacturing	K4
CO5	Evaluate the effectiveness of AI/ML techniques in VLSI testing and verification	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									
CO2	3	2	2	1							1	
CO3	3	2	1	1							1	
CO4	3	2	1	2								1
CO5	3	2	1	2								1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Joobbani, R. An Artificial Intelligence Approach to VLSI Routing.	Joobbani, R.	Springer Science & Business Media	2012				
2	VLSI Physical Design Automation.	Sait, Sadiq.	World Scientific,	1999				
3	Machine Learning in VLSI Computer-Aided Design.	Elfadel, Ibrahim.	Springer,	2019				
4	VLSI Physical Design: From Graph Partitioning to Timing Closure.	Kahng, Andrew.	Springer Nature	2022				
5	Machine Learning Applications in Electronic Design Automation.	Ren, Haoxing.	Springer Nature	2023				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Layout Optimization in VLSI Design.	Lu, Bing.	Springer Science & Business Media	2001				
2	Machine Learning for VLSI Chip Design	Abhishek Kumar, Suman Lata Tripathi and K Srinivasa Rao	John Wiley & Sons	2023				

# ADVANCED VLSI ARCHITECTURES FOR DSP

Course Code	PEEVT 755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	5/3	Exam Hours	2Hrs.30 Min.
Prerequisites (if any)	VLSI		

# **Course Objectives:**

- 1. Equip students with the knowledge of pipelining and parallel processing techniques
- 2. Enable students to comprehend and apply retiming and unfolding techniques for system optimization.
- 3. Develop the ability to implement and analyze fast convolution algorithms and advanced filtering methods.
- 4. Train students to design and optimize bit-level arithmetic architectures, focusing on efficiency and noise reduction.

Module No.	Syllabus Description	Contact Hours
	Pipelining and Parallel Processing - Pipelining of FIR Digital Filters, Data-	
	Broadcast Structures, Fine-Grain Pipelining. Parallel Processing, Pipelining,	
	and Parallel Processing for Low Power.	_
1	Retiming: Definition and Properties, Solving System of Inequalities,	9
	Retiming Techniques- Cutset Retiming and Pipelining, Retiming for Clock	
	Period Minimization, Retiming for Register Minimization	
	Unfolding: Properties of Unfolding, Critical Path, Unfolding and Retiming,	
	Application of Unfolding, Sample Period Reduction, Parallel Processing.	
2	Folding: Introduction to Folding Transformation, Register Minimization	9
	Techniques, Register Minimization in Folded Architectures, Folding in	
	Multirate Systems.	
	Fast convolution - Cook Toom Algorithm, Winograd Algorithm, Iterated	0
3	convolution, Cyclic convolution	9

	Algorithmic strength reduction in filters and transforms- Parallel FIR filters,	
	DCT and IDCT, Pipelined and parallel recursive and adaptive filters-	
	pipeline interleaving in Digital filters, Pipelining in IIR digital filters,	
	Parallel processing for IIR filters, Low power IIR filter design using	
	pipelining and parallel processing.	
	Digital lattice filter structures- Schur algorithm, Digital basic lattice filters,	
	Derivation of one multiplier Lattice filter, Derivation of scaled-normalized	
	lattice filter, Round off noise calculation in Lattice filters.	
4	Bit level arithmetic architectures- parallel multipliers, interleaved floor plan	9
	and bit plane based digital filters, bit serial filter design and implementation,	
	Canonic signed digital arithmetic.	

#### Criteria for Evaluation (Evaluate and Analyse): 20 marks

#### Evaluation Methods:

#### 1: Practical Experiments Using Design and Analysis Tools (10 marks)

Students will perform specific experiments using tools like MATLAB/Simulink, Cadence Virtuoso, Xilinx Vivado Design Suite, or Synopsys Design Compiler. Each experiment will focus on implementing and analyzing different DSP architectures and techniques.

#### 2: Course Project (10 marks)

Comprehensive project involving design, implementation, and analysis of different DSP architectures models. Project phases: Proposal, Design, Implementation, Testing, Final Report, Presentation, and Viva Voce.

#### **Sample Experiments:**

#### Experiment 1: Design and simulate a pipelined FIR filter.

- *Objective:* Understand the impact of pipelining on the performance and power consumption of FIR filters.
- *Tools Used:* MATLAB/Simulink
- Steps Involved:
  - Define the FIR filter specifications (filter order, cutoff frequency).

- Design the FIR filter using MATLAB.
- Implement the filter in Simulink and add pipelining stages.
- Simulate the filter and compare performance metrics (latency, power consumption) with and without pipelining.
- Analyze and document the results.

#### **Experiment 2: Design an unfolded DSP system to reduce the critical path.**

- *Objective:* Learn how unfolding can reduce the critical path and enhance system throughput.
- *Tools Used:* MATLAB/Simulink
- Steps Involved:
  - Select a DSP algorithm (e.g., FIR filter).
  - Implement the algorithm in MATLAB.
  - Apply unfolding techniques to the algorithm.
  - Simulate the original and unfolded designs in Simulink.
  - Compare critical paths and document the performance improvements.

#### Experiment 3: Design and simulate the Winograd convolution algorithm.

- *Objective:* Demonstrate the computational benefits of the Winograd algorithm over conventional methods.
- *Tools Used:* Xilinx Vivado
- Steps Involved:
  - Study the Winograd algorithm theory.
  - Implement the algorithm in HDL.
  - Simulate the design in Vivado.
  - Compare the computational efficiency with conventional convolution methods.
  - Document the findings.

# Experiment 4: Implement a scaled-normalized lattice filter and analyze noise reduction

#### techniques.

- *Objective:* Evaluate round-off noise reduction in digital lattice filters.
- *Tools Used:* Cadence Virtuoso
- Steps Involved:
  - Design a lattice filter in HDL.
  - Implement the design in Cadence Virtuoso.
  - Apply scaled-normalized techniques for noise reduction.
  - Simulate the filter and analyze round-off noise.
  - Document the noise reduction results.

#### **Sample Project Topics:**

- 1. Design a low-power parallel processing architecture for a DSP application
- 2. Apply retiming to minimize the clock period of a digital circuit
- 3. Optimize the register usage in digital circuits through retiming.
- 4. Apply unfolding techniques to reduce the sample period of a digital filter.
- 5. Implement a folded architecture for a multirate system focusing on register minimization.
- 6. Apply folding transformations and understand their impact on hardware resource optimization
- 7. Analyze the efficiency of the Cook-Toom algorithm compared to standard convolution methods
- 8. Design and implement a parallel FIR filter using algorithmic strength reduction techniques.
- 9. Implement a pipelined recursive filter using algorithmic strength reduction.
- 10. Design and simulate a digital lattice filter with one multiplier.
- 11. Design and implement a parallel multiplier architecture and evaluate their performance and efficiency.
- 12. Implement a bit-serial filter design for understanding the trade-offs between hardware complexity and performance in bit-serial designs.

Criteria for Evaluation: Lab Experiments (10 marks)

#### **Understanding of Concepts (3 marks)**

- Demonstrates a thorough understanding of the theoretical concepts related to the experiments.
- Correctly explains the purpose and expected outcomes.

#### **Implementation and Accuracy (3 marks)**

- Correctly implements the DSP architectures using appropriate tools.
- Ensures the design functions as expected with minimal errors.

#### Analysis and Problem-Solving (2 marks)

- Effectively analyzes the model performance and identifies issues.
- Demonstrates problem-solving skills in addressing challenges encountered during experiments.

#### **Documentation and Reporting (1 mark)**

- Provides detailed documentation of the experimental setup, process, and outcomes.
- Includes visualizations, code snippets, and analysis of results.

#### **Presentation and Communication (1 mark)**

- Clearly presents the experiments and their results.
- Able to answer questions and explain design choices.

#### **Course Project (10 marks)**

#### **Project Proposal and Planning (2 marks)**

- Submits a well-defined project proposal outlining objectives, methodology, and expected outcomes.
- Demonstrates thorough planning and a clear timeline for the project.

#### **Design and Implementation (3 marks)**

- Implements the project design accurately using appropriate tools and techniques.
- The design is functional and meets the project objectives.

#### **Innovation and Creativity (2 marks)**

- Introduces innovative ideas or unique approaches in the design and implementation.
- Demonstrates creativity in solving problems or optimizing designs.

# Analysis and Testing (2 marks)

- Effectively analyzes the project design to identify and address any issues.
- Conducts thorough testing to verify the functionality and performance of the model.

# **Final Report and Presentation (1 mark)**

- Submits a comprehensive final report detailing the project, including objectives, design, methodology, analysis, and results.
- Clearly presents the project and its outcomes, and effectively communicates the key points.

#### End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 sub divisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate an understanding of pipelining and parallel processing techniques in DSP systems, including the design and implementation of pipelined FIR digital filters and low power parallel processing architectures.	К3
CO2	Apply retiming techniques to optimize digital circuits for clock period and register minimization, solving system inequalities and implementing cutset retiming and pipelining.	K5
CO3	Utilize unfolding and folding transformations to reduce critical path and register usage in DSP architectures, and apply these techniques to multirate systems for sample period reduction.	K4
CO4	Implement advanced convolution algorithms such as Cook-Toom and Winograd, and apply algorithmic strength reduction techniques to enhance the performance of FIR and IIR filters	K6
C05	Design and analyze digital lattice filter structures and bit-level arithmetic architectures, including parallel multipliers, bit-plane-based digital filters, and bit-serial filter designs, focusing on performance optimization and noise reduction.	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		3							
CO2	3	3	2		3							
CO3	3	3	2		3							
CO4	3	3	2		3							
CO5	3	3	2		3							

**CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)** 

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	VLSI DSP Systems- Design and Implementation	Keshab K Parhi	John Wiley	1 st Edn 1999.				
2	Digital Signal processing for multimedia systems	Keshab K Parhi and Takao Nishitami	CRC press	2018				
3	Digital Signal Processing with Field Programmable Gate Arrays	Uwe Meyer-Baese	Springer	4 th Edn, 2014				
4	VLSI Design Methodology Development	Thomas Dillinger	Prentice Hall	1 st Edn 1998				
5	Advanced Digital Signal Processing and Noise Reduction	Saeed V. Vaseghi	Wiley	4 th Edn 2008				

	Reference Books						
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year			
1	Understanding digital signal processing	Richard G Lyons	Pearson Education India	3,1997			
2	DSP Integrated Circuits	Lars Wanhammar	Academic Press	1 st Edn 1999			
3	Digital Filter Design	T. W. Parks and C. S. Burrus	Wiley-Interscience	1 st Edn 1987			
4	Architectures for Digital Signal Processing	Peter Pirsch	John Wiley & Sons	1 st Edn 1998			
5	CMOS VLSI Design: A Circuits and Systems Perspective	Neil H. E. Weste and David Harris	Pearson	4 th Edn 2010			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc20_ee44/preview					
2	https://www.youtube.com/playlist?list=PLT1QAv48lhQKwFZ0TkqpJaUm2LeW9226z					

# **MECHATRONICS**

Course Code	<b>OEEVT 721</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

**1.** To provide knowledge about the integration of mechanical, electronics, control and computer engineering in the design of mechatronics systems.

Module No.	Syllabus Description	Contact Hours				
	Introduction to Mechatronics: Structure of Mechatronics system. Sensors -					
	Characteristics - Temperature, flow, pressure sensors. Displacement, position					
	and proximity sensing by magnetic, optical, ultrasonic, inductive, capacitive					
	and eddy current methods. Encoders: incremental and absolute, gray coded					
	encoder. Resolvers and synchros. Piezoelectric sensors. Acoustic Emission					
1	sensors. Principle and types of vibration sensors.	9				
	Actuators: Mechanical actuators, Electrical actuators, Hydraulic and					
	Pneumatic actuators					
	Directional control valves, pressure control valves, process control valves.					
	Rotary actuators. Development of simple hydraulic and pneumatic circuits					
	using standard Symbols.					
	Mechatronics in Computer Numerical Control (CNC) machines: Design of					
	modern CNC machines - Mechatronics elements - Machine structure: guide					
	ways, drives. Bearings: anti- friction bearings, hydrostatic bearing and					
2	hydrodynamic bearing. Re-circulating ball screws, pre-loading methods. Re-	9				
	circulating roller screws. Measuring system for NC machines - direct and					
	indirect measuring system.					

	System modeling - Mathematical models and basic building blocks of general mechanical electrical fluid and thermal systems	
3	Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) –Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple ladder programs for specific purposes. Case studies of Mechatronics systems: Automatic camera, bar code reader, pick and place robot, automatic car park barrier system, automobile engine management system.	9
4	Mechatronics in Robotics-Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Force and tactile sensors. Range finders: ultrasonic and light-based range finders Robotic vision system - Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the sensors and actuators used in mechatronics	K2
CO2	Demonstrate the various components of a CNC machine	K2
CO3	Explain the principles of PLCs	K2
CO4	Explain the robotic sensors and vision system	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3		2	2	2							2
CO3	3	3	2	2	2							2
CO4	3		2	2	2	2						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mechatronics:ElectronicControl Systems in Mechanicaland Electrical Engineering,	Bolton W.,	Person Education Limited, New Delhi,	2007			
2	Mechatronics:IntegratedMechanicalElectronicSystems,	Ramachandran K. P., G. K. Vijayaraghavan, M. S. Balasundaram,	Wiley India Pvt. Ltd., New Delhi,	2008			
3	IntroductiontoRobotics:Analysis,Systems,Applications,.	Saeed B. Niku	Person Education, Inc., New Delhi	2006			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Mechatronics and Measurement Systems,	David G. Aldatore, Michael B. Histand	McGraw-Hill Inc., USA.	2003		
2	Industrial Robotics	Gordon M. Mair	Prentice Hall International, UK,	1998		
3	Mechatronics,	HMT	Tata McGraw-Hill Publishing Company Ltd., New Delhi,.	2004		
4	Smart Material Systems andMEMS:DesignDevelopment Methodologies,	Vijay K. Varadan, K. J. Vinoy, S. Gopalakrishnan,	John Wiley & Sons Ltd., England,	2006.		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc21_me27/preview				
2	https://nptel.ac.in/courses/112103174				
3	https://archive.nptel.ac.in/courses/112/103/112103174/				
4	https://nptel.ac.in/courses/112107298				

# **ENTERTAINMENT ELECTRONICS**

Course Code	OEEVT722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

1. To provide broad knowledge on various industry standards, algorithms and technologies used to carry out digital audio and video broadcasting in infotainment industry.

Module No.	Syllabus Description	Contact Hours				
	Review of Analog Television: Scanning, Horizontal and Vertical					
	Synchronization, Color information, Transmission methods. NTSC and PAL					
	standards.					
1	Digital media streaming: Packetized elementary stream of audio-video data,	9				
	MPEG data stream, MPEG-2 transport stream packet, Accessing a program,	-				
	scrambled programs, program synchronization. PSI, Additional (Network					
	information and service description) information in data streams for set-top					
	boxes.					
	Digital Video Broadcasting (DVB): Satellite TV broadcasting - DVB-S					
	Parameters, DVB-S Modulator, DVB-S set-top box, DVB-S2. Cable TV					
	broadcasting – DVB-C Standard, DVB-C Modulator, DVB- C set-top box.					
	Terrestrial TV broadcasting - DVB-T Standard, DVB-T Modulator, DVB-T					
2	Carriers and System Parameters, DVB-T receiver.Broadcasting for Handheld	9				
	devices – DVB-H Standard DVB tele-text, DVB subtitling system.					
	Digital Audio Broadcasting (DAB): Comparison of DAB with DVB.					
	Physical layer of DAB. DAB Modulator, DAB Data Structure, DAB single					
	frequency networks, Data broadcastingusing DAB.					

3	High Definition Video and Audio: Pixel resolution, Comparison with Standard Definition TV, Review of Discrete Cosine Transforms (DCT), Video Compression - Quantization levels, Horizontal/Vertical blanking interval, Vertical Color resolution, DPCM of moving pictures, DCT, Run- length coding. MPEG-4 Video coding.	9
4	Display Technology: Block diagram of video reproduction system in a TV, Cathode Ray tubes, Basic principle of Plasma displays, LC displays, Light- emitting diode displays, Field emission displays, Organic light emitting device displays. Television of future: Holographic TV, Virtual Reality, Augmented Reality.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand packetized streaming of digital media happens in the field of infotainment industry.	K2
CO2	Realise the critical aspects of DVB and DAB standards used for media broadcasting	K2
CO3	Apply video coding/compression algorithms are used to produce high- definition video in MPEG-4 standard	К3
CO4	Understand modern display technologies for video reproduction	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3										2
CO2	3	3			2						2	2
CO3	3	3			3						2	2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		<b>Text Books</b>		
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Video and Audio Broadcasting Technology: A Practical Engineering Guide (Signals and Communication Technology)	W. Fischer	Springer	2020
2	Understanding Digital Television An Introduction to DVB Systems with Satellite, Cable, Broadband and Terrestrial TV,.	Lars-Ingemar Lundström	Focal Press,Elsevier	2006
3	Newnes Guide to Televeision and Video Technology	K F Ibrahim	Newnes	2007
4	Introduction to Flat Panel Displays	Jiun-Haw Lee, David N. Liu, Shin-Tson Wu	Wiley	2008

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Digital Video and HD Algorithms and Interfaces,"	C. Poynton	Morgan Kaufmann	2012.							
2	Digital audio broadcasting: principles and applications of DAB, DAB+ and DMB	Wolfgang Hoeg, Thomas Lauterbach	Wiley	2009.							
3	Introduction to Digital Audio	John Watkinson	Focal Press	1994.							
4	Art of Digital Video,	John Watkinson	Focal Press	2008							
5	Introduction to Digital Video,	John Watkinson	Focal Press	2001							

Video Links (NPTEL, SWAYAM)								
Module No.	Link ID							
1	https://www.youtube.com/watch?v=M_nTmRtAD98							
2	https://www.youtube.com/watch?v=aTDr79yvUus							
3	https://www.youtube.com/watch?v=g_ysg46q-jQ							
4	https://www.youtube.com/watch?v=4BaDaGTUgIY							

# **OPTIMIZATION TECHNIQUES**

Course Code	OEECT723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

- 1. Enable the learner to formulate engineering minima/maxima problems as optimization problems
- **2.** Enable the learner to deploy various constrained and unconstrained optimization algorithms to obtain the minima/maxima of engineering problems

Module No.	Syllabus Description	Contact Hours
	Engineering application of Optimization - Statement of an Optimization	
	problem-Classification, Review of basic calculus concepts -Stationary	
	points; Functions of single and two variables; Convexity and concavity of	
1	functions -Definition of Global and Local optima - Optimality criteria,	
	Linear programming methods for optimum design – Standard form of linear	9
	programming (LP) problem; Canonical form of LP problem; Simplex	
	Method, Duality, Application of LPP models in engineering	
	Optimization algorithms for solving unconstrained nonlinear optimization	
	problems - Search based techniques: Direct search: Fibonacci and golden	
2	section search , Hookes and Jeeves , Gradient based method: Newton's	
	method	9
	Optimization algorithms for solving constrained optimization problems-	
3	direct methods – penalty function methods, barrier method -Optimization of	9
	function of multiple variables subject to equality constraints; Lagrangian	

	function-Inequality constrained techniques-KKT conditions-constrained	
	steepest descent method	
	Modern methods of Optimization-Metaheuristic techniques: Genetic	
4	Algorithms – Simulated Annealing – Particle Swarm optimization –Ant	
	colony optimization-: Use of Matlab/Scilab to solve optimization problem	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total	
5	15	10	10	40	

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub divisions.	60
	(4x9 = 36 marks)	
(8x3 =24marks)		

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Formulate an optimization problem to optimize an engineering	K2
COI	application using the principles of basic calculus.	
CO2	Apply the Simplex method to solve a linear programming problem	K3
	Solve the unconstrained optimization problems using gradient based	K3
CO3	method.	
	Apply the various optimization techniques to solve a constrained	K3
CO4	optimization problem	
CO5	Use metaheuristic algorithms to solve constrained and unconstrained	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									2
CO2	3	3	3									2
CO3	3	2	3									2
CO4	3	2	3									2
CO5	3	2	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Optimization, Theory and Practice	S.S RAO	New Age International Publishers	4 th Edition ,2012				

	Reference Books						
Sl. No	Title of the Book	Name of the Publisher	Edition and Year				
1	Optimization Techniques and Applications with Examples	Xin-She Yang	John Wiley & Sons	2018			
2	Optimization for Engineering Design Algorithms and Examples	Deb K	Prentice Hall India	2000			
3	Introduction to Optimization Design	Arora J	Elsevier Academic Press, New Delhi	2004			
4	Linear Programming	Hardley G	Narosa Book Distributors Private Ltd	2002			
5	Genetic Algorithms and engineering optimization	Mitsuo Gen, Runwei Cheng	John Wiley & Sons	2002			
6	An introduction to optimization	Edwin KP Chong, Stanislaw, H Hak	John Wiley & Sons	Fourth Edition, 2013			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	NPTEL         https://www.youtube.com/watch?v=a2QgdDk4Xjw			
2	NPTEL       https://www.youtube.com/watch?v=dPQKltPBLfc			
3	NPTEL https://www.youtube.com/watch?v=qY-gKL7GxYk			
4	NPTEL         https://www.youtube.com/watch?v=Z_8MpZeMdD4         https://www.youtube.com/watch?v=FKBgCpJlX48			

# **SEMESTER 8**

# Electronics Engineering (VLSI Design and Technology)

Course Code	<b>PEEVT 861</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEVT503 VLSI Technology	Course Type	Elective

# MEMORY DESIGN AND IN-MEMORY COMPUTING

#### **Course Objectives:**

- 1. To provide an understanding of various memory types and their applications, emphasizing SRAM cell design, optimization, and the principles of memory operation in integrated circuits.
- **2.** To enable students to design and evaluate DRAM and Flash memory systems, focusing on cell design, refresh mechanisms, memory array organization, and the intricacies of programming, erasing, and error correction.
- **3.** To equip students with the skills to analyse timing and signal integrity in memory circuits, and to apply power optimization techniques, including power-gating and clock-gating, to enhance the efficiency of memory systems.
- 4. To explore in-memory computing techniques and emerging memory technologies, and to understand their applications in non-volatile storage, scientific computing, signal processing, and deep learning.

Module No.	Syllabus Description			
1	Introduction to Memory Design: Overview of memory types and their applications, Importance of memory design in integrated circuits, Basic principles of memory operation. Static Random-Access Memory (SRAM): SRAM cell design and optimization, Memory bit-cell stability and read/write operations, SRAM array architecture and peripheral circuitry.	9		

2	Dynamic Random-Access Memory (DRAM): DRAM cell design and refresh mechanisms, Memory array organization and addressing, Timing considerations in DRAM design. Flash Memory: NAND and NOR Flash architectures, Programming and erasing mechanisms, Wear levelling and error correction in Flash memory.	9
3	Timing and Signal Integrity: Setup and hold time analysis, Clock-to-q delay considerations, Signal integrity challenges in memory circuits. Power Optimization in Memory Systems: Active and standby power consumption in memory, Power-gating and clock gating techniques, Low-power design strategies for memory circuits. Emerging Memory Technologies: Overview of emerging memory technologies.	9
4	In-memory computing: Memory devices and applications, Memory devices and computational primitives, Charge-based memory devices & Computational primitives, Resistance-based memory devices & Computational primitives, Phase change memory. Applications: Non-volatile binary storage, Scientific computing, Signal processing & Optimization, Deep learning.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5 15		10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and design various memory types, including SRAM, by applying fundamental principles of memory operation and optimizing SRAM cell stability and array architecture.	K2
CO2	Design and analyse DRAM and Flash memory systems, focusing on cell design, refresh mechanisms, array organization, and addressing, as well as programming, erasing, and error correction techniques.	K4
CO3	Perform timing and signal integrity analysis in memory circuits and apply power optimization techniques, including power-gating and clock- gating, to enhance the efficiency of memory systems.	K3
CO4	Explore and implement in-memory computing techniques and emerging memory technologies, understanding their applications in non-volatile storage, scientific computing, signal processing, and deep learning.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	1						
CO2	2	2	3	2	2	1						
CO3	2	1	2	1	2	1						
CO4	2	1	2	1	2	1						

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	VLSI Memory Chip Design	Kiyoo Itoh	Springer	2013			
2	VLSI-Design of Non-Volatile Memories.	G Campardo, R. Micheloni, D. Novosel	Springer	2005			
3	Extreme Statistics in Nanoscale Memory Design	Amith Singhee, Rob A Rutenbar	Springer	2010.			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Resistive Random Access Memory (RRAM): From Devices to Array Architectures	Shimeng Yu	Springer Nature	2022				
2	High-Bandwidth Memory Interface	Chulwoo Kim, Hyun- Woo Lee, Junyoung Song	Springer	2013				
3	Memory Systems: Cache, DRAM, Disk	Bruce Jacob, Spencer Ng, David Wang	Morgan Kaufmann	2010				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/101/117101058/				
2	https://www.youtube.com/watch?v=OeRk8XZnk0s				
3	https://onlinecourses.nptel.ac.in/noc24_ee67/preview				
4	https://www.youtube.com/watch?v=BTnr8z-ePR4				

# **POWER SEMICONDUCTOR DEVICES**

Course Code	PEEVT 862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEVT503 VLSI Technology	Course Type	Elective

#### **Course Objectives:**

- 1. To introduce the fundamental concepts and historical evolution of high-power circuit design, emphasizing power levels, efficiency, and thermal considerations in various industrial applications.
- 2. To provide an understanding of high-power design methodologies, focusing on techniques for optimizing efficiency and reliability in circuits, and in-depth knowledge of power semiconductor devices such as MOSFETs and IGBTs
- **3.** To equip students with the principles and design considerations for high-frequency converters and power amplifiers, including effective thermal management strategies for high-power systems.
- 4. To explore real-world applications and case studies of high-power circuit designs, and to investigate advanced topics and emerging trends to enhance efficiency and reliability in high-power systems.

Module No.	Syllabus Description					
1	Introduction to High Power Circuit Design: Overview of the importance of high-power circuit design in various industries, Historical context and evolution of high-power technologies, Introduction to key concepts: power levels, efficiency, and thermal considerations.	9				
2	Design Methodologies for High Power Applications: Principles of high- power design methodologies, Techniques for optimizing efficiency and reliability in high-power circuits. Power Semiconductor Devices and Applications: In-depth study of power semiconductor devices (MOSFETs, & IGBTs). Applications of power	9				

	devices in high-power circuits.	
3	High-Frequency Converters and Power Amplifiers: Principles of high- frequency converters and power amplifiers, Design considerations and challenges in high-frequency power conversion. Thermal Management in High Power Systems: Principles of thermal management for high-power circuits, Heat dissipation strategies and thermal modelling.	9
4	Applications of High-Power Circuit Design: Real-world applications of high- power circuit designs. Case studies: Analysing successful high-power system implementations. Advanced Topics and Emerging Trends in High Power Design: Emerging trends in high-power circuit design, Advanced components and techniques for achieving higher efficiency and reliability.	9

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

# **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the significance of high-power circuit design, including its historical evolution, key concepts such as power levels, efficiency, and thermal considerations relevant to various industries.	K2
CO2	Apply design methodologies for high-power applications, optimizing efficiency and reliability by understanding the principles and techniques associated with power semiconductor devices like MOSFETs and IGBTs.	К3
СОЗ	Design and analyse high-frequency converters and power amplifiers, addressing design considerations and challenges, and implement effective thermal management strategies for high-power systems.	K4
CO4	Evaluate real-world applications of high-power circuit design through case studies, and explore advanced topics and emerging trends to enhance efficiency and reliability in high-power circuit implementations	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	1			1	1		
CO2	3	2	3	2	1	1			1	1		
CO3	3	3	3	2	3	1			1	1		
CO4	3	3	3	3	1	1			1	1		

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of High- Frequency CMOS Analog Integrated Circuits.	Duran Leblebici, Yusuf Leblebici	Cambridge	2009				
2	High-Frequency Integrated Circuits	Sorin Voinigescu	Cambridge	2013				
3	The Design of CMOS Radio- Frequency Integrated Circuits	Thomas H. Lee	Cambridge	2003				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Transmission Lines: Equivalent Circuits, Electromagnetic Theory, and Photons	Richard Collier	Cambridge University Press	2013			
2	Dynamic Power Supply Transmitters: Envelope Tracking, Direct Polar, and Hybrid Combinations	Earl McCune	Cambridge University Press	2015			
3	RF Circuit Design	Ludwig	Pearson	2011			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/106/117106089/				
2	www.digimat.in/nptel/courses/video/108108112/				
3	https://archive.nptel.ac.in/courses/108/102/108102157/				
4	https://archive.nptel.ac.in/courses/117/106/117106089/				

# MIXED SIGNAL CIRCUIT DESIGN

Course Code	<b>PEEVT 863</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Analog VLSI design (Course code)	Course Type	Theory

# **Course Objectives:**

- 1. To give the knowledge about various analog and digital CMOS circuits
- **2.** To impart the skill in analysis and design of analog and digital CMOS circuits.

Module No.	Syllabus Description	Contact Hours
	CMOS Amplifiers- Common Source with diode connected loads and current	
1	source load, CS stage with source degeneration, CG stage and Source	
	Follower (Only Voltage Gain and Output impedance of circuits)	
	Differential Amplifiers-Differential Amplifier with MOS current source Load, with cascaded load and with current mirror load, MOS telescopic cascode amplifier. (Only Voltage Gain and Output impedance of circuits)	11
2	Band gap References- Supply Independent Biasing, Temperature	
	independent references -band gap reference Phase Locked Loop - Simple	9
	PLL, Basic PLL Topology, Charge Pump PLL, Basic Charge Pump PLL	
	Dynamic analog circuits - charge injection and capacitive feed through in	
3	MOS switch, Reduction technique, Switched Capacitor Circuits- sample and	11
	hold circuits, Switched Capacitor Integrator, Ladder filters	
4	DAC Specifications-DNL, INL, latency, SNR, Dynamic Range, DAC	9
Architecture - Resistor String, Charge Scaling and Pipeline types.		
---------------------------------------------------------------------------	-----	
ADC Specifications-Quantization error, Aliasing, SNR, Aperture error, ADC		
	l I	
Architecture- Flash and Pipe line types.		
	1	

#### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To analyse the CMOS amplifiers and differential amplifiers	K4
CO2	To understand the band gap references and PLL Concepts	K2
CO3	To analyse the dynamic analog circuits and Switched capacitor circuits	K4
CO4	To understand the DAC and ADC circuits	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	2	2									
CO3	3	3										
CO4	3	2										1

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	CMOS Analog Circuit Design	Phillip E. Allen, Douglas R. Holbery	Oxford	2004.				
2	Fundamentals of Microelectronics	Razavi B.	Wiley student Edition	2014.				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	CMOS: Circuits Design, Layout and Simulation	Baker, Li, Boyce	Prentice Hall India	2000			
2	Design of Analog CMOS Integrated Circuits	Razavi B.	Mc Graw Hill	2001			

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/117/101/117101105/						
2	https://www.youtube.com/watch?v=7xVSL93ZZq8&list=PLLDC70psjvq5vtrb0EdII4xIKA15e c-Ij&inde						
3	https://www.youtube.com/watch?v=z5yaC4oEHLk						
4	https://www.youtube.com/watch?v=8LuofneTOF8						

# **DIGITAL IMAGE PROCESSING**

Course Code	PEEVT 864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Signal Processing (Course code)	Course Type	Theory

# **Course Objectives:**

- 1. To study the image fundamentals and transforms necessary for image processing.
- 2. To familiarize different image processing techniques

Module No.	Syllabus Description	Contact Hours
1	Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition, image sampling and quantization, basic relationships between pixels – neighborhood, adjacency, connectivity, distance measures. Brightness, contrast, hue, saturation, mach band effect, Colour image fundamentals-RGB, CMY, HIS models, 2D sampling, quantization.	9
2	Image Enhancement: Spatial domain methods: point processing-intensity transformations, histogram processing, image subtraction, image averaging, geometric transformation Sharpening filters – first and second derivative, two-dimensional DFT and its inverse, frequency domain filters – low-pass and high-pass.	9
3	Image segmentation: Classification of Image segmentation techniques, region approach, clustering techniques. Classification of edges, edge detection Image restoration: Restoration Models, Linear Filtering Techniques: Inverse and Wiener	9
4	Image Compression- Need for compression, redundancy, classification of image compression schemes,-inter-pixel and psycho-visual; Lossless compression – predictive, Lossy compression- predictive and transform coding –DCT, (basics only); Still image compression standards – JPEG.	9

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	<i></i>
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the various concepts and mathematical transforms for image transform	K2
CO2	Interpret the various image enhancement techniques	K2
CO3	Illustrate the image segmentation algorithm	K2
CO4	Summarise basic image compression techniques	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1										2
CO2	3	2			2							2
CO3	3	2			2							2
CO4	3	2			2							2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Digital Image Processing	Gonzalez Rafel C	Pearson Education	2009							
2	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	Tata Mc Graw Hill	2015							

	<b>Reference Books</b>									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fundamentals of Digital Image Processing	Jain Anil K	PHI	1988						
2	Digital image processing	Kenneth R Castleman	Pearson Education,	2/e,2003						
3	Digital Image Processing	Pratt William K	John Wiley	4/e,2007						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/117105135								
2	https://nptel.ac.in/courses/117105135								
3	https://nptel.ac.in/courses/117105135								
4	https://nptel.ac.in/courses/117105135								

# **ROBOTICS**

Course Code	<b>PEEVT 866</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

- 1. Impart knowledge about the engineering aspects of Robots.
- 2. Discuss the various sensors and actuators used in robotic manipulator.
- 3. Practice forward and inverse kinematic calculations of known robotic manipulators.
- 4. Teach the method of Trajectory planning calculation.

Module No.	Syllabus Description	Contact Hours
	Introduction: Definition and origin of robotics, Robot Anatomy, Robot	
	specifications,	
_	Robot characteristics: accuracy, precision, and repeatability, Areas of	
1	application, classification of robots.	9
	Robotic arm: Components and structure, Types of joints and workspace,	,
	Common kinematic arrangements, Wrists, End effectors.	
	Sensors: Types and applications of sensors in Robotics, position and	
	displacement sensors, Strain gauge based force torque sensors,	
	Tachometers.	
	Robotic vision systems: Imaging, Sensing and Digitization, Image	
2	processing techniques, Areas of application in robotics.	9
	Robotic drive systems and actuators: Hydraulic, Pneumatic and Electric	
	drives. Specification, principle of operation and areas of application of:	
	Stepper motor, Servo motor and brushless DC motor. Microprocessor	
	control of electric motors, speed control using PWM and direction control	

	using H- Bridge.						
	Introduction to kinematics: Position and orientation of objects, Rotation,						
	Euler angles, Rigid motion representation using Homogenous						
	Transformation matrix.						
	Forward kinematics: Link coordinates, Denavit-Hartenberg						
3	Representation, Application of DH convention to different serial kinematic	9					
	arrangements fitted with spherical wrist.						
	Inverse kinematics: General properties of solutions, Kinematic Decoupling,						
	Inverse kinematic solutions for all basic types of three-link robotic arms						
	fitted with a spherical wrist.						
	Velocity kinematics: Derivation of the Jacobian, Application of velocity						
	kinematics for serial manipulators, importance of Singularities.						
	Manipulator Dynamics: Introduction to Legrangian mechanics and						
4	Dynamic equation for 2 DOF robots, Introduction to position control and	9					
	force control of robotic manipulators.						
	Trajectory Planning: Joint space Vs Cartesian space, Joint space trajectory						
	planning						

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total	
5	15	10	10	40	

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
<ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks (8x3 =24marks)</li> </ul>	<ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks)</li> </ul>	60

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Identify the anatomy of robotic manipulators used in industry.	Understand
CO2	Identify the sensors and actuators required for robotic manipulators.	Understand
CO3	Determine the forward and inverse kinematics of robotic manipulators.	Apply
CO4	Determine the dynamics and path planning of robotic manipulators.	Apply

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	-	-	-	-	-	-	-	-	2
CO2	2	3	2	-	-	-	-	-	-	-	-	2
CO3	2	3	2	-	-	-	-	-	-	-	-	2
CO4	2	3	2	-	-	-	-	-	-	-	-	2
CO5	2	3	2	-	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Robotics. Analysis, control, applications	Saeed B. Niku	Wiley student edition	2 nd Edition, 2010			
2	Industrial Robotics – Technology, Programming and Applications	Mikell and Groover	McGraw Hill	2 nd Edition, 2012			

Reference Books							
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year			
1	Robotics: Fundamental concepts and analysis	Ashitava Ghosal	OXFORD University Press	2006 Edition			
2	Robot Dynamics and Control	Spong and Vidyasagar	Wiley Student Edition	2008 Edition			
3	Fundamentals of Robotics: Analysis & Control	Robert J. Schilling	Pearson Education	2000 Edition			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://youtu.be/j8vYClEnyk0         https://youtu.be/o0NLi-wJS1I         https://youtu.be/MH26PuRNMXM         https://youtu.be/Ra-R0ZCdkPc         https://youtu.be/81CTkf-qjA0         https://youtu.be/KMqWSypAuEg         https://youtu.be/nLRoK6Hyj0w         https://youtu.be/uMxmBVX1pAQ         https://youtu.be/xKzAqwpT06A			
2	https://youtu.be/sCTgZv33tuA https://youtu.be/T6kGQrnUYD8 https://youtu.be/NcK9vlcdvZs https://youtu.be/rYaTu3Y2DMY https://youtu.be/HITCMaNCFQ8 https://youtu.be/HQgU76ZOP0o			
3	https://youtu.be/wcy0Y3Jgf14 https://youtu.be/9Xyy24mbLQ0 https://youtu.be/8W64yS6vH14 https://youtu.be/6Wb0rmIvIII https://youtu.be/AbRhzpReb2Q https://youtu.be/h4_2xAPj3y0 https://youtu.be/Zh55IM043rY https://youtu.be/iENLo_dxCZI https://youtu.be/NibHkkg2CQU https://youtu.be/93yncDTK aT4			
4	https://youtu.be/B67ug1yx13E https://youtu.be/mXxEp5Q6dA8 https://youtu.be/thGicrIgtv0 https://youtu.be/irfHrA4fSDw https://youtu.be/O6ZbUDSFg_0 https://youtu.be/ApiF_f_AntI https://youtu.be/zSvCAW-mowg https://youtu.be/OVGH_e0kjSE			

# SEMESTER S8 CLOUD COMPUTING

Course Code	PEEVT 867	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

## **Course Objectives:**

- 1. Understand Cloud Computing Fundamentals.
- **2.** Explore Cloud Technologies and Platforms.
- **3.** Apply Cloud Solutions and Ensure Security.

Module No.	Syllabus Description	Contact Hours
	Traditional computing- Limitations. Overview of Computing Paradigms-	
	Grid Computing, Cluster Computing, Distributed Computing, Utility	
	Computing, Cloud Computing. NIST reference Model-Basic terminology	
	and concepts. Cloud characteristics, benefits and challenges, Roles and	0
	Boundaries. Cloud delivery (service) models-Infrastructure-as-a-Service	8
	(IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), XaaS	
	(Anything-as-a-service) - Cloud deployment models- Public cloud,	
	Community cloud, Private cloud, Hybrid cloud.	
	Introduction to virtualization-Virtualizing physical computing resources,	
	Virtual Machines (Machine virtualization), non-virtualized v/s virtualized	
	machine environments. Types of VMs- process VM v/s system VM,	
	Emulation, interpretation and binary translation. Hardware-level	
2	virtualization- Hypervisors/VMM. Types of Hypervisors. Full Virtualization,	8
	Para- Virtualization, Hardware-assisted virtualization, OS level	
	virtualization. Basics of Network Virtualization, Storage Virtualization and	
	Desktop Virtualization, Pros and cons of virtualization.	

	Broadband networks and internet architecture- Internet Service Providers	
	(ISPs), Data center technology, Web technology, Multitenant technology,	
	Service technology. Resource provisioning techniques-static and dynamic	
	provisioning.	
3	Open-source software platforms for private cloud-OpenStack, Cloud Stack,	
	Basics of Eucalyptus, Open Nebula, Nimbus.	
	Cloud Programming- Parallel Computing and Programming Paradigms. Map	
	Reduce – Hadoop Library from Apache, HDFS, Pig Latin High Level	
	Languages, Apache Spark.	
	Basic terms and concepts in security- Threat agents, Cloud security	
	threats/risks, Trust. Operating system security-Virtual machine security-	
	Security of virtualization- Security Risks Posed by Shared Images, Security	
	Risks Posed by Management OS. Infrastructure security- Network Level	
	Security, Host Level Security, Application level security, Security of the	
	Physical Systems. Identity & Access Management- Access Control.	
	Amazon Web Services (AWS):- AWS ecosystem- Computing services,	
	Amazon machine images, Elastic Compute Cloud (EC2), Advanced compute	
4	services. Storage services-Simple Storage System (Amazon S3), Elastic	12
	Block Store (Amazon EBS).	
	Google Cloud Platform:- IaaS Offerings: Compute Engine (GCE), Cloud	
	Storage, PaaS Offerings: Google App Engine (GAE), Storage services,	
	Application services, Compute services, Database Services, SaaS Offerings:	
	Gmail, Docs, Google Drive.	
	Microsoft Azure: Azure Platform Architecture, Hyper-V, Azure Virtual	
	Machine, Compute services, Storage services.	

# **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	30	12.5	12.5	60

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
<ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 2 marks         (8x2 =16 marks)     </li> </ul>	<ul> <li>Each question carries 6 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions. (4x6 = 24 marks)</li> </ul>	40

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the various cloud computing models and services.	K2
CO2	Demonstrate the significance of implementing virtualization techniques.	K2
CO3	Explain different cloud enabling technologies and compare private cloud platforms	K2
CO4	Apply appropriate cloud programming methods to solve big data problems	К3
CO5	Describe the need for security mechanisms in cloud and compare the different popular cloud computing platforms	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	2	2	3									3
CO3	3											3
CO4	2	2	3	3	2							3
CO5	3	3			3							3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing Concepts, Technology &Architecture	Thomas, E., Zaigham M., Ricardo P	Prentice Hall	2013			
2	Mastering cloud computing: foundations and applications programming	Buyya, R., Vecchiola, C., & Selvi, S. T.	Morgan Kaufmann	2017			
3	Cloud computing	Bhowmik, S	Cambridge University Press	2017			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cloud computing: theory and practice	Marinescu, D. C	Morgan Kaufmann	2017		
2	Cloud computing: Principles and paradigms	Buyya, R., Broberg, J., & Goscinski, A. M	John Wiley & Sons.	2011		

Video Links (NPTEL, SWAYAM)						
Module No.	Module     Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105167/					
2	https://onlinecourses.nptel.ac.in/noc23_cs90/preview					
3	3 https://onlinecourses.nptel.ac.in/noc22_cs18/preview					
4	https://archive.nptel.ac.in/courses/106/105/106105167/					

### MIXED-SIGNAL VLSI DESIGN

Course Code	PEEVT 865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEVT601 Analog VLSI Design, PCEVT50 Digital CMOS Design	Course Type	5 Credit Elective

#### **Course Objectives:**

- 1. To provide students with a comprehensive understanding of CMOS amplifier design, including small-signal modelling, frequency response analysis, and the implementation of various amplifier configurations such as common source, cascode, and folded cascode amplifiers.
- **2.** To equip students with the skills to design and analyze CMOS differential amplifiers, including the use of current mirrors and techniques to enhance common-mode rejection ratio (CMRR), and to understand their application in high-performance circuits.
- **3.** To familiarize students with the design and optimization of two-stage operational amplifiers, focusing on frequency compensation techniques like Miller compensation, and the development of stable bandgap references for reliable operation.
- **4.** To teach the principles of data converter design, including DAC and ADC architectures, and to enable them to understand and implement various data conversion techniques such as resistor string, R-2R ladder, and different ADC types.

Module No.	Syllabus Description				
1	CMOS Amplifiers MOS small signal model:	0			
1	<b>CMOS Amplifiers</b> : Common source amplifier with resistive and active loads, Common source amplifier with source degeneration, Common gate and Common drain amplifier (only voltage gain and input and output	3			

	impedances of the circuits), Frequency Response of CMOS Amplifiers	
	Cascode Amplifier: Cascoded amplifier with cascade loads Folded cascode	
	Amplifier.	
	CMOS Differential Amplifiers	
	MOS Current Mirror: Basic circuit, PMOS and NMOS current mirrors	
	Simple and Cascode current mirror circuits.	
	CMOS Differential Amplifier: Differential Amplifier with resistive, current	
2	source and current mirror loads, MOS telescopic cascode amplifier (only	9
2	voltage gain and input and output impedance of the circuits)	
	Common-Mode Rejection Ratio (CMRR) and its Enhancement: methods	
	to measure and improve CMDD and techniques such as common mode	
	to measure and improve CNIRK, and techniques such as common-mode	
	feedback to enhance performance in noisy environments	
	CMOS Operational Amplifier	
	Two Stage Operational Amplifiers	
	Frequency compensation of OPAMPS	
3		9
	Miller compensation.	
	<b>Band gap References-</b> Supply Independent Biasing, Temperature independent	
	references band gap reference	
	Data Convertance DAC analifications ADC specifications	
	Data Converters: DAC specifications, ADC specifications	
	DAC Architecture - Resistor String, R-2R Ladder Networks, Current Steering,	
4	Charge Scaling, cyclic and Pipeline types.	9
	ADC Architecture- Flash type. The Successive approximation type and	
	oversampling ADCs	

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	5 15		10	40

#### Criteria for Evaluation (Evaluate and Analyse): 20 marks

#### 1. Literature Review and Report (10 Marks)

#### **Assessment Method:**

- Students select recent publications on a specific topic related to the course (eg. Differential Amplifier Design).
- Preparation of a report summarizing the findings, discussing the significance, and proposing future research directions.

#### Criteria:

- Relevance of Chosen Publications (2 Marks): Selection of up-to-date and significant research papers.
- Depth of Analysis (4 Marks): Thorough understanding and critical analysis of the literature.
- Clarity and Organization (2 Marks): Well-structured report with clear arguments.
- Originality (2 Marks): Innovative insights or perspectives.

#### 3. Design Exercise (10 Marks)

Design a CMOS differential amplifier meeting specific requirements such as gain, input impedance, and common-mode rejection ratio (CMRR). Present the design through a schematic diagram and perform calculations to verify that the design meets the given specifications.

#### **Criteria for Assessment:**

#### 1. Design Accuracy (4 marks)

- Correct implementation of the differential amplifier design.
- Accuracy in meeting the specified design parameters, such as gain, impedance, and CMRR.

#### 2. Calculation and Analysis (3 marks)

• Correctness and thoroughness of calculations related to amplifier performance.

• Proper analysis and justification of design choices.

### 3. Schematic Presentation (2 marks)

- Clarity and correctness of the schematic diagram.
- Proper labelling and organization of the components in the schematic.

### 4. Design Justification (1 mark)

- Clear explanation of design choices and how they address the problem requirements.
- Insight into the trade-offs made during the design process.

## End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub divisions.	60
	(4x9 = 36 marks)	
(8x3 =24marks)		

### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and analyse various CMOS amplifiers, including common source, common gate, and common drain amplifiers, as well as cascode and folded cascode amplifiers, with an understanding of their frequency response and small-signal models.	К3
CO2	Implement and evaluate CMOS differential amplifiers with various loads, apply MOS current mirrors, and enhance common-mode rejection ratio (CMRR) using techniques such as common-mode feedback in noisy environments.	К3
СО3	Design and optimize two-stage operational amplifiers, apply frequency compensation techniques including Miller compensation, and develop bandgap references for stable supply-independent and temperature- independent biasing.	К3
CO4	Analyse and design data converters, including DACs and ADCs, by understanding their specifications, architectures, and various types such as resistor string, R-2R ladder, current steering, flash, successive approximation, and oversampling ADCs.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	3	1	1		1			
CO2	2	3	2	2	3	1	1		1			
CO3	2	3	2	2	3	1	1		1			
CO4	2	3	2	3	2	1	1		1			

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw-Hill	2/e, 2002			
2	CMOS: Circuits Design, Layout and Simulation,	Baker, Li, Boyce,	Prentice Hall India,	2000			
3	Microelectronic Circuits	Sedra & Smith	Oxford University Press	6/e,2017			

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	CMOS Analog Circuit Design,	Phillip E. Allen, Douglas R. Holbery	Oxford University Press	3/e				
2	Fundamentals of Microelectronics	Behzad Razavi	Wiley student Edition	2014				
3	Analysis and Design of Analog Integrated Circuits	Meyer Gray , Hurst, Lewis	Wiley	5/e, 2009				

Video Links (NPTEL, SWAYAM)					
Module No.					
1	https://onlinecourses.nptel.ac.in/noc22_ee37/preview				
2	https://archive.nptel.ac.in/courses/117/101/117101106/				
3	https://onlinecourses.nptel.ac.in/noc22_ee27/preview				
4	https://nptel.ac.in/courses/117106034				

# PATTERN RECOGNITION

Course Code	<b>OEEVT 831</b>	<b>CIE Marks</b>	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBECT304	Course Type	Theory

# **Course Objectives:**

- 1. To introduce the fundamental algorithms for pattern recognition
- 2. To instigate the various classification and clustering techniques

Module No.	Syllabus Description	Contact Hours		
	Introduction: Basics of pattern recognition system, various applications, Machine Perception, classification of pattern recognition systems			
1	Design of Pattern recognition system, Pattern recognition Life Cycle. Statistical Pattern Recognition: Review of probability theory, Gaussian distribution, Bayes decision theory and Classifiers			
2	Concept of feature extraction and dimensionality, Curse of dimensionality, Hidden Markov Models (HMM) - basic concepts, Gaussian mixture models.			
3	Non-Parametric methods: Non-parametric techniques for density estimation - Parzen-window method, K-Nearest Neighbour method.			
	Decision trees: Construction, splitting of nodes, choosing of attributes, overfitting, pruning			
	Linear Discriminant based algorithm: Perceptron, Support Vector Machines	,		
4	Multilayer perceptrons, Back Propagation Algorithms. Artificial Neural Networks			
	Classifier Ensembles: Bagging, Boosting/ AdaBoost			
	Unsupervised learning: Clustering - Criterion functions for clustering, Algorithms for clustering: K-means and Hierarchical methods, Cluster validation			

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	• ]	Each question carries 9 marks.	
	module.	• 7	Two questions will be given from each module, out	
•	Total of 8 Questions, each	(	of which 1 question should be answered.	60
	carrying 3 marks	• ]	Each question can have a maximum of 3 sub	60
		(	divisions.	
	(8x3 =24marks)		(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design a pattern recognition system	К2
CO2	Know the major approaches in statistical and syntactic pattern recognition.	K2
СО3	Become aware of the theoretical issues involved in pattern recognition system design such as the curse of dimensionality.	К2
CO4	Implement pattern recognition technique	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcome	GO DO 16 1 7 11	a		
$-\chi_{J}$ - $\chi_{J}$ what the state of the state of $\chi_{J}$ and $\chi_{J}$ and $\chi_{J}$ and $\chi_{J}$	('A) PA Manning Tahla	(Manning of Course	Outcomes to Program Outcome	) ( ) (
	CO-I O Mapping Labic	intapping of Course		231

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										3
CO2	2	2										3
CO3	2	2										3
CO4	2	2										3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Pattern Recognition and Machine Learning,	C M Bishop	Springer	2006				
2	Pattern Classification and scene analysis,	R O Duda, P.E. Hart and D.G. Stork,	John Wiley	2 nd edition, 2001				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Pattern Recognition Engineering	Morton Nadler, Eric P. Smith	John Wiley & Sons, New York	1993.				
2	Pattern Recognition : Statistical, Structural and Neural Approaches	Robert J. Schalkoff	John Wiley & Sons Inc. New York	2007				
3	Pattern Recognition	S.Theodoridis and K. Koutroumbas	Academic Press	4/e,2009				
4	Machine Learning	Tom Mitchell	McGraw Hill	1997				
5	Pattern Recognition Principles	Tou, J.T. and Gonzalez, R.C.	Addison-Wesley Publishing Company,	1974				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://www.youtube.com/watch?v=mfePdDh9t6Q						
2	https://www.youtube.com/watch?v=yG1nETGyW2E						
3	https://www.youtube.com/watch?v=pMHOPezBUfU						
4	https://youtu.be/EWmCkVfPnJ8?si=re_1ZpaXCtOohvwq						

# MACHINE LEARNING

Course Code	<b>OEEVT 832</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

- 1. To understand basics of machine learning and different types
- 2. To understand different machine learning algorithms.

Module No.	Syllabus Description	Contact Hours
	Basics of machine learning, supervised and unsupervised learning, examples,	
	features, feature vector, training set, target vector, test set, feature extraction,	
1	over-fitting, curse of dimensionality. Review of probability theory, Gaussian	9
	distribution, decision theory.	
	Regression: linear regression, error functions in regression, multivariate	
	regression, regression applications, bias and variance. Classification : Bayes'	
2	decision theory, discriminant functions and decision surfaces, Bayesian	9
3	classification for normal distributions, classification applications.	-
	Linear discriminant based algorithm: perceptron, gradient descent method,	
	perceptron algorithm, support vector machines, separable classes, non-	9
	separable classes, multiclass case.	
	Unsupervised learning: Clustering, examples, criterion functions for	
	clustering, proximity measures, algorithms for clustering. Ensemble	
4	methods: boosting, bagging. Basics of decision trees, random forest,	
	examples.	0
	Dimensionality reduction: principal component analysis, Fischer's	9
	discriminant analysis. Evaluation and model Selection: ROC curves,	
	evaluation measures, Confusion matrix, recall, precision, accuracy.	

### **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

## **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe basics of machine learning and types.	K2
CO2	Differentiate regression and classification, apply Bayes' decision theory in classification	К3
CO3	Apply linear algebra and statistical methods in discriminant based algorithms	К3
CO4	Illustrate the basics of unsupervised learning, non-metric methods, ensemble methods, dimensionality reduction, evaluation, model selection.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2		2	-	-	-	-	-	-	-
CO3	3	2	2		2	-	-	-	-	-	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Pattern Recognition and Machine Learning	l Bishop, C. M.	Springer, New York	2006				
2	Pattern Recognition	Theodoridis, S. and Koutroumbas, K.	Academic Press, San Diego	2003				

	<b>Reference Books</b>							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The Elements of Statistical Learning	Hastie, T., Tibshirani, R. and Friedman, J.	Springer	2001				
2	Pattern Classification	Duda, R.O., Hart, P.E.	Wiley, New York	2001				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc23_cs18/preview - Introduction to Machine Learning By Prof. Balaraman Ravindran, IIT Madras				
2	https://onlinecourses.nptel.ac.in/noc23_cs18/preview - Introduction to Machine Learning By Prof. Balaraman Ravindran, IIT Madras				
3	https://onlinecourses.nptel.ac.in/noc23_cs18/preview - Introduction to Machine Learning By Prof. Balaraman Ravindran, IIT Madras				
4	https://onlinecourses.nptel.ac.in/noc23_cs18/preview - Introduction to Machine Learning By Prof. Balaraman Ravindran, IIT Madras				

# **COMPUTER VISION**

Course Code	OEEVT833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

1. To develop the knowledge of various methods, algorithms and applications of Computer Vision.

Module No.	Syllabus Description	Contact Hours
1	Review of image processing techniques: Digital filters, linear filters- Homomorphic filtering, Point operators- Histogram, neighbourhood operators, thresholding Mathematical morphology, Binary shape analysis, Binary shape analysis, Erosion, Dilation, Opening and Closing, Hit-or-Miss Transform ,connectedness, object labelling and counting, Boundary descriptors – Chain codes. Properties of Binary Regions, Geometric Features, Statistical Shape	9
	Properties Feature Detection and Image Synthesis,Edge detection – edges, lines, active	
2	contours, Split and merge, Mean shift and mode finding, Normalized cuts, Graph cuts, energy- based methods- Cranny's Algorithm, Corner detection, Harris corner detection algorithm. Hough transform-Line and curve detection.	9
3	Shape from X - Shape from shading, Photometric stereo, Texture Occluding contour detection. Motion Analysis- Regularization theory,Optical Flow: brightness constancy equation, aperture problem, Horn-Shunck method,	9

	Lucas-Kanade method. Structure from motion	
4	Object recognition-Shape correspondence and shape matching PCA,SVM, LDA, Bayes rule andML methods. Eigen faces,Face detection, Face recognition, Application: Scene analysis Examples of real time applications: In-vehicle vision system.	9

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

# End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
٠	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out of	
٠	Total of 8 Questions, each	which 1 question should be answered.	60
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome					
CO1	Understand digital filtering operations for CV applications.	К2				
CO2	Apply basic morphological and boundary operators for Computer vision applications	К3				
CO3	Apply edge, corner detection algorithms to locate objects in an image.	K3				
CO4	Apply optical flow algorithms to detect moving objects in a video.	K3				
CO5	Analyse a given scene using appropriate computer vision algorithms to detect/recognize objects and to implement it in real time practical applications.	K4				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2						2	3
CO2	3	3	2		2						2	3
CO3	3	3	3		2						2	3
CO4	3	3	3		2						2	3
CO5	3	3	3		2						2	3

Text Books										
Sl. No	Title of the Book         Name of the Author/s		Name of the Publisher	Edition and Year						
1	Computer and Machine Vision-TheoryAlgorithmAndPracticalities	E. R .Davies	Academic Press,	2012.						
2	Computer Vision: Algorithms and Applications	Richard Szeliski	ISBN 978-1- 84882- 935-0, Springer	2011						
3	Computer Vision: A Modern Approach	David Forsyth and Jean Ponce	Pearson India	2002						

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Deep Learning,	Goodfellow, Bengio, and Courville,	MIT Press,.	2006					
2	Mastering OpenCV with Practical Computer Vision Projects	Daniel Lelis Baggio, et al	Packt Publishing Limited,	2012					
3	Computer Vision: Models, Learning, and Inference,	Simon J D Prince	Cambridge University Press	2012					
4	Digital Image Processing and Computer Vision,	R. J. Schalkoff	John Wiley,	2004					
5	Programming Computer Vision with Python: Tools and algorithms for analyzing images	Jan Erik Solem,	O'Reilly Media,	2012					

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc19_cs58/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs93/preview						
3	https://onlinecourses.nptel.ac.in/noc24_ee38/preview						

# **SECURE COMMUNICATION**

Course Code	<b>OEEVT 834</b>	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

# **Course Objectives:**

1. To understand network security services and mechanisms and the types of attacks

Module No.	Syllabus Description	Contact Hours				
	OSI security architecture, Security attacks - Passive attacks, Active attacks,					
	Security services- Authentication, Access Control, Data Confidentiality,					
	Data integrity, Nonrepudiation, Availability service. Model for network					
1	security. Symmetric cipher model, Cryptography, Crypto analysis,	9				
	Substitution techniques- Hill Cipher, One time pad, Transposition					
	Techniques					
•	Finite Fields Groups, Rings and Fields, Modular arithmetic, Euclidian					
2	algorithm, Finite Fields of the form GF(p), Polynomial arithmetic					
	Block Cipher Principles – Stream Ciphers and Block Ciphers, Feistel Cipher,					
	Feistel Decryption algorithm, The Data encryption standard, DES	_				
3	Decryption - Avalanche effect, The AES Cipher, substitute bytes	9				
	transformation, Shift row transformation, Mix Column transformation					
	Public Key Cryptography, RSA and Key Management Principles of public					
	key cryptosystems-Public key cryptosystems, Application for Public key					
	cryptosystem requirements, Fermat's theorem, Euler's Totient Function,					
4	Euler's theorem, RSA algorithm, Key management, Distribution of public	10				
	keys, Publicly available directory, Public key authority, public key	10				
	certificates, Distribution of secret keys using public key cryptography, Public					
	Key Encryption, Message Authentication Code, Hash function					

## **Continuous Internal Evaluation Marks (CIE):**

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written )	Total
5	15	10	10	40

### End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

	Course Outcome					
601	Illustrate network security services, mechanisms and the types of					
	different encryption techniques	K2				
CO2	Apply the concepts of group, ring, field, modular arithmetic, Euclidean	K3				
02	algorithm, Finite fields and polynomial arithmetic	K5				
CO2	Outline the principles of modern symmetric ciphers like the Data	V)				
	Encryption Standard and Advanced Encryption Standard	K2				
COA	Describe the concepts of public key cryptography, RSA algorithm, key	V)				
004	distribution and management for public key systems	KZ				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	2										2
CO4	3	2										2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Cryptography and Network security: principles and practice	William Stallings	Prentice Hall of India	4 th Edition, 2006						

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Cryptography and Network security Tata McGraw-Hill,	Behrouz A. Forouzan	Tata McGraw-Hill	2008	
2	Abstract Algebra	David S. Dummit& Richard M Foote	Wiley India Pvt. Ltd.	2 nd Edition, 2008	
3	Cryptography, Theory and Practice	Douglas A. Stinson	Chapman & Hall, CRC PressCompany, Washington	2005	
4	Elliptic Curves: Theory and Cryptography	Lawrence C. Washington	Chapman & Hall, CRCPress Company, Washington	2008	

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/106/105/106105162/ CRYPTOGRAPHY AND NETWORK SECURITY, PROF. SOURAV MUKHOPADHYAY Department of Computer Science and Engineering IIT Kharagpur			
2	https://archive.nptel.ac.in/courses/106/105/106105162/ CRYPTOGRAPHY AND NETWORK SECURITY, PROF. SOURAV MUKHOPADHYAY Department of Computer Science and Engineering IIT Kharagpur			
3	https://archive.nptel.ac.in/courses/106/105/106105162/ CRYPTOGRAPHY AND NETWORK SECURITY, PROF. SOURAV MUKHOPADHYAY Department of Computer Science and Engineering IIT Kharagpur			
4	https://archive.nptel.ac.in/courses/106/105/106105162/ CRYPTOGRAPHY AND NETWORK SECURITY, PROF. SOURAV MUKHOPADHYAY Department of Computer Science and Engineering IIT Kharagpur			