Course	Course Name	L-T-P-Credits	Year of
CE336	ΣΤΡΕΝΟΤΗ ΩΕ ΜΑΤΕΡΙΑΙ S Ι ΑΒ	0031	2016
CE330 Dronoquisito	• SP201 Machanics of solids	0-0-3-1	2010
Course Ob			
Course Obj	ectives:		
• To s	tudy various types of failures occurring in service	life of ductile metals.	
Prov	vide an environment to enable students to correlate	theoretical knowledge	gained in the
class	s room with the physical world.	T 1 1 1	
• To s	tudy the properties of various materials under vari-	ous working conditions.	
	ALL MDDUL KA	IL/IVI	
List of Exerc	cises/ Experiments (Minimum 12 Mandatory)	ICAL	
1. Tests	on Open Coiled Spring	V	
Equip	oment: Spring Testing Machine, Vernier Calliper.	Y	
2. Tests	on Closed Coiled Spring		
<u>Equip</u>	<u>oment:</u> Spring Testing Machine, Vernier Calliper.		
3. Bend	ing Test on Wooden Beams Using U. T. M.		
<u>Equi</u> j	<u>oment:</u> Universal Testing Machi <mark>ne,</mark> Deflection Gau	uges, Measuring Tape.	
4. Verif	ication of Clerk Maxwell's Law of Reciprocal Def	lection and Determinati	on of Young's
Modu	alus 'E' for Steel.		-
<u>Equip</u>	<u>pment:</u> Apparatus for verification of Clerk Maxwel	ll's Law of Reciprocal T	heorem,
Defle 5 Terri	ction gauges, Weights, Scale, Vernier Calliper.		
5. Torsi	on Pendulum Test for M.S. wires.	on Watch	
6 Torsi	on Pondulum Tost for Aluminium Wiros	op waich.	
0. TOISI	on rendulum Test for Aluminium whes.	on Watch	
7 Torsi	on Pendulum Test for Brass Wires	op waich.	
Eauin	oment: Torsion Pendulum, Cylindrical Weights, St	op Watch.	
8. Tensi	ion Test Using U. T. M. on M. S. Rod.	op marchi	
Equip	oment: Universal Testing Machine, Deflection gau	iges, Measuring Tape, V	<i>Vernier</i>
Calip	per.	8,	
9. Tensi	ion Test Using U. T. M. on Torsteel rod		
Equip	oment: Universal Testing Machine, Deflection gau	i <mark>ges, Measur</mark> ing Tape, V	Vernier
Calip	per.		
10. Tensi	ion Test Using U. T. M. on High Tensile Steel rod		
<u>Equi</u>	<u>oment:</u> Uni <mark>versal Test</mark> ing Ma <mark>chine, De</mark> flection gau	<mark>iges, Me</mark> asuring Tape, V	Vernier
Calip	per.		
11. Com	pression test on concrete specimen. 4		
<u>Equip</u>	<u>oment:</u> Compression Testing Machine.		
12. Com	pression test on brick.		
12 Tanà	<u>oment:</u> Compression Testing Machine.		
13. Torsi	on Test on M. S. Kod.		
14 Show	<u>ment.</u> Torsion Testing Machine, Vernier Caliper.		
14. Shear	ment: Universal Testing Machine Deflection agu	ugas Maasuring Tana V	Tornior
<u>Equip</u> Calir	<u>omeni.</u> Oniversai Tesiing Machine, Defiection gau per	ges, measuring rupe, v	ernier
15 Impa	ct Test Using Izod Annaratus and Charny		
Emin	oment: Charpy/Izod Impact Testing Machine		
16. Impa	ct Test Using Charpy Apparatus		
Equip	<u>oment:</u> Charpy/ Izod Impact Testing Machine.		

- 17. Hardness Test using Brinell Hardness Apparatus <u>Equipment:</u> Brinell Hardness Testing Machine.
- 18. Strut Test. <u>Equipment:</u> Strut Testing Machine, Vernier Calliper.

Course Outcome:

Upon successful completion of the course, the student will be:

- i. Familiar with the arrangement and conduct of experiments in the Material Testing laboratory environment.
- ii. Able to note down relevant readings and perform calculations while an experiment is in progress thereby correlating theoretical concepts of materials and their practical implications..
- iii. Able to comprehend the factors responsible for variation between theoretical and experimental results pertaining to the domain of Material Science.

Text books:

- 1. R.K. Bansal; Strength of Materials; Laxmi Publications.
- 2. Wonsiri Punurai; Mechanics of Materials-Laboratory and Experiments; LAP LAMBERT Academic Publishing.

Course code	Course Name:	L-T-P-Credits	Year of Introduction
EE339	ELECTRICAL ENGINEERING LAB	0-0-3-1	2016
Prerequisi	te : EE214 Electrical technology and instrum	entation	
Course Ob	jectives:		
•	Introduction to devices commonly used in carry	ing out experiments per	rtaining to the
	domain of electrical engineering.		
•	Familiarization in setting up of experiments in a	a laboratory environmen	nt.
• '	To carryout load test on various electrical mach	inery and evaluate their	performance.
•	Provide an environment to correlate theoretical	knowledge gained in th	e class room
	with the physical world.	JICAL	
List of Exe	rcises/ Experiments (Minimum 12 experiment	ts/exercises are mandat	ory)
1 04		A A	
I. Stuc	in or 3-point and 4-point starters for D.C machin	nes	
<u>Equ</u>	<u>ipmeni:</u> 5 Poini Siarier, 4 Poini Siarier.		
2 000	C of self excited D C machines – critical resist	ances of various speeds	Voltage built-
	with a given field circuit resistance. Critical spee	ed for a given field circ	uit resistance.
Eau	ipment: D.C Motor-Generator set. Ammeter. Vo	oltmeter. Rheostat.	
		5.0	
3. OC	C of separately excited D.C machines.		
<u>Equ</u>	<mark>ipment:</mark> D.C Motor-Generator Set, <mark>A</mark> mmeter, V	oltmeter, Rheostat.	
4. Loa	d test on shunt generator – deduce external, inte	rnal and armature chara	acteristics.
<u>Equ</u>	<u>ipment:</u> D.C Shunt Generator- Motor Set, An	nmeter, Voltmeter, Rhe	eostat, Loading
Rhe	ostat.		
5. Loa	d test on compound generator.		
<u>Equ</u>	<u>ipment:</u> Compound Generator, Ammeter, Voltm	eter, Rheostat, Loading	g Rheostat.
6 Sur	nhuma'a tast an D.C. mashinas		
0. Swi Equ	inment: D C Shunt Motor Ammeter Voltmeter	Rheostat	
<u>Lqu</u>	ipmeni. D.C. Shuni Motor, Annacer, Voluncier,	Micosiai.	
7. Bral	ke test on D.C shunt motors and determination of	of characteristics.	
Eau	ipment: D.C Shunt Motor. Ammeter. Voltmeter.	Rheostat.	
	· · · · · · · · · · · · · · · · · · ·		
8. Bral	ke test on D.C series motors and determination of	of characteristics.	
Equ	ipment: D.C Series Motor, Ammeter, Voltmeter		
9. Bral	ke test on D.C compound motors and determina	tion of characteristics.	
<u>Equ</u>	ipment: D.C Compound Motor, Ammeter, Voltn	neter, Rheostat.	
10.00	and SC tasts on single phase transformers	adoutation of and	Component and
10. U.U	and S.C tests on single phase transformers	- calculation of peri	ormance using

equivalent circuit – efficiency, regulation at unity, lagging and leading power factors. *Equipment: Single Phase Transformer, Ammeter, Voltmeter, Wattmeter, Autotransformer.*

- 11. Load test on single phase transformers. <u>Equipment:</u> Single Phase Transformer Ammeter, Voltmeter, Wattmeter, Loading Rheostat
- 12. Alternator regulation by emf and mmf methods. <u>Equipment:</u> Alternator Set, Ammeter, Voltmeter, Rheostat.
- 13. Study of starters for three phase induction motors. <u>Equipment:</u> Star Delta Starter, TPDT switch, Autotransformer.
- 14. Load tests on three phase squirrel cage induction motors. <u>Equipment:</u> 3 Phase Squirrel Cage Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 15. Load tests on three phase slip ring induction motors. <u>Equipment:</u> 3 Phase Slip Ring Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 16. Load tests on single phase induction motors. <u>Equipment:</u> Single Phase Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 17. Polarity, transformation ratio of single phase transformer. <u>Equipment:</u> Single Phase Transformer, Ammeter, Voltmeter.
- 18. Equivalent circuit of three phase squirrel cage induction motor. <u>Equipment:</u> 3 Phase Squirrel Cage Induction Motor, Ammeter, Voltmeter, Wattmeter.

Course Outcome:

Upon successful completion of the course, the student will be:

- i. Familiar with the arrangement and conduct of experiments in an electrical laboratory environment.
- ii. Able to note down relevant readings and perform calculations while an electrical experiment is in progress.
- iii. Able to comprehend the factors responsible for variation between theoretical and experimental results.

Text Book:

• J. B. Gupta; Theory and Performance of Electrical Machines; S.K. Kataria & Sons.

Course	Course Name	I T D Cradita	Voor of
codo	Course Name:	L-I-F-Creans	I car of
SP301	SHID DVNAMICS	3104	2016
SD301 Dronoguigito	SHIF DINAMICS	3-1-0-4	2010
Course Ob	: INII iectives:		
	amiliarise the use of linear wave theory in rer	resentation of oce	ean waves
• To i	nterpret the use of Strip theory in theoretical s	study of sea keepi	ng
• To t	perceive the effect of wayes on ships and result	tant effects or mo	tions
• To	formulate methods to control ship respon	use in sea durin	g design and
oper	ration		
• To	understand the forces on a ship in a tur	n and the effec	t of the ship
cha	acteristics and rudder on turning ability		t of the ship
• To e	evaluate dynamic effects of High Speed Craft	in motion	
Syllabus:	statute dynamic critects of ringh Speed Clart		
Introduction	to Sea-Keeping of ships Ocean Wayes and Shi	ns Shin in Seawa	v and Dynamic
effects Ship	Motion Control Maneuvering Fundamentals Cor	trol Surface Desig	n. Experimental
Determinatio	n of Hydrodynamic Derivatives Model Tests	Various Types	of Trials, Ship
Dynamics an	d Design Aspects. Performance Criteria Sea keer	oing Features of Hi	gh Performance
Ships, Effect	of Hull Configuration in Maneuvering Ability.		8
Expected O			
Upon succes	ssful completion of the course, the student wil	l be able to:	
i.	Theoretically analyse sea keeping and maneuv	ering behaviour o	of ships.
ii.	Predict performance of ship in various wave	conditions and co	ompare it with
	lesign criteria and regulatory body guidelines.		
iii. (Compare Hydrodynamic behavior of different	ships in consider	ation.
Text Books	:		
1. Lew	is E.U: Principles of Naval Architecture	(2 nd Revision) V	/ol. III 1989:
SNA	ME, New York.	(,	
2. Bhatt	acharya. R, Dynamics of Marine vehicles, V	Viley Inter Scien	ce, New York,
1978.			
Reference I	Books:		
1. A. R.	J. M. Lloyd; Sea keeping: Ship Behaviour in Roug	<mark>gh Weath</mark> er; John W	/iley & Sons.
2. Antho	ony F. Molland and Stephen R. Turnock; Marin	e Rudders and Co	ntrol Surfaces -
Princi	ples, Data, Design and Applications, 2007; Butter	worth-Heinemann.	
3. Edwa	ard M. Lewandowski; The Dynamics of Marin	ne Craft - Maneu	vering and Sea
keepii	ng, 2004; World Scientific Publishing Co. Pte. Ltd		
4. H.E S	aunders; Hydrodynamics in Ship Design, 1957, T	Vol. I, II, III; the S	Society of Naval
Archi	tects and Marine Engineers.		
5. Odd 1	M Faltinsen; Hydrodynamics of High Speed Marin	ne Vehicles; Cambr	ridge University
Press.			
6. Raws	on and Tupper; Basic Ship Theory Vol. II; Butterw	orth-Heinemann, 2	2001.
7. Trista	n Perez; Ship Motion Control, Course Keeping an	nd Roll Stabilization	on Using Rudder
and F	ins, 2005; Springer.		

ModuleContentHoursSee Ex MaIIntroduction to Seakeeping, Wind Generated Waves, Regular Wave Theory.315Equations of Motion, Ship-Wave Encounter, Strip Theory.315Equations of Motion, Ship-Wave Encounter, Strip Theory.315IIDerived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness.315Added Resistance, Powering in Waves, Wave Loads.215IIIIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability.315IIIBasic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315IIIExperimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).315	m	
IIntroduction to Seakeeping, Wind Generated Waves, Regular Wave Theory.315Wave Spectrum, Types of Spectra, Ship in Regular Waves.315Equations of Motion, Ship-Wave Encounter, Strip Theory.33IIShip in Seaway and Dynamic Effects, Pitch and Roll in Irregular Waves, RAO.315Derived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness.315Added Resistance, Powering in Waves, Wave Loads.215FIRST INTERNAL EXAMIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability.3Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.315Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).315	arks	
IWave Theory.15Wave Spectrum, Types of Spectra, Ship in Regular Waves.315Equations of Motion, Ship-Wave Encounter, Strip Theory.315Ship in Seaway and Dynamic Effects, Pitch and Roll in Irregular Waves, RAO.315IIDerived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness.315Added Resistance, Powering in Waves, Wave Loads.215FIRST INTERNAL EXAMIIIIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability.3Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.315Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).315		
III Wate Spectrum, Types of Spectra, Ship in Regular Wates. 3 Equations of Motion, Ship-Wave Encounter, Strip Theory. 3 III Ship in Seaway and Dynamic Effects, Pitch and Roll in Irregular Waves, RAO. 3 Derived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness. 3 Added Resistance, Powering in Waves, Wave Loads. 2 FIRST INTERNAL EXAM 3 Introduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability. 3 Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes. 3 Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver. 3 Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism). 3	5%	
IIIShip in Seaway and Dynamic Effects, Pitch and Roll in Irregular Waves, RAO.3IIDerived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness.3Added Resistance, Powering in Waves, Wave Loads.2FIRST INTERNAL EXAMIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability.Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.3Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.3Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).3		
IIWaves, RAO.3IIDerived Responses: Slamming, Deck Wetness, Relative Motions, Sea-Sickness.315Added Resistance, Powering in Waves, Wave Loads.2FIRST INTERNAL EXAMIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability.3Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.315Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).315		
Added Resistance, Powering in Waves, Wave Loads. 2 FIRST INTERNAL EXAM Introduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability. 3 Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes. 3 15 Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver. 3 15 Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism). 3 15	5%	
FIRST INTERNAL EXAM Introduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability. 3 3 Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes. 3 15 Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver. 3 3 Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism). 3		
IIIIntroduction to Maneuverability: The Control Loop, Path Keeping, Various Types of Directional Stability. Basic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315IIIIntroduction to Maneuver Spiral Manoeuver, Pull Out Manoeuver.3315Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).333		
IIIBasic Hydrodynamics and Motion Equations of a Maneuvering Body, Control Fixed Stability Indexes.315Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.33Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).3		
Turning Trials, Zig Zag Manoeuver, Spiral Manoeuver, Pull Out Manoeuver.3Experimental Determination of Hydrodynamic Derivatives (Rotating Arm technique, Planar Motion Mechanism).3	15%	
Experimental Determination of Hydrodynamic Derivatives 3 (Rotating Arm technique, Planar Motion Mechanism).		
IV Rudder: Geometry, Hydrodynamics of Flow Around Rudder. 2 15	5%	
Type of Rudders, Maximum Rudder Deflection Angle and Deflection Rate Rudder Stock Location 3		
SECOND INTERNAL EXAM		
Design Considerations for Sea Keeping: Seakeeping Performance Criteria and Ship Seaway Responses, Factors Affecting Pitching, Heaving and Rolling.		
VShip Motion Control- Control of Roll and Pitch, Active and Passive Stabilizers.220)%	
Theoretical Computation of Hydrodynamic Derivatives.2		
Controllability in the Ship Design Spiral, Effect of HullConfiguration on Controls-Fixed Stability; Effect of Hull3Configuration on Nonlinear and Linear Manoeuvers.		
VISeakeeping of High Performance Ships- Catamarans, SWATH, Planning Craft, Hydrofoil Craft, Air Cushion Vehicles, Surface5VIEffect Ships.20)%	
Heel During Turn. 2		
IMO Maneuvering Standards. 4		

Maximum Marks: 100

Exam Duration: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name:	L-T-P-Credits	Year of					
code	Introduction							
SB302	02 SHIP DESIGN - I 3-1-0-4 2016							
Prerequisite	: Nil							
Course Obj	ectives:							
• To p	rovide an understanding of basic design methodolo	gies and the com	ponents of the					
ship	design process.							
• To <u>p</u>	provide knowledge on importance of safety consid	erations within th	ne ship design					
proc	ess and its impact on operational and economic consi	derations.						
Syllabus:	TECHNOLOGI	$(\Delta]$						
Introduction	to Ship Design, Engineering Economics in Ship D	esign, Operating	Cost, Owner's					
Requirement;	Methods of Ship Design, Design Spiral, Design	n Categories, Shi	p Parameters;					
Estimation of	Main Dimensions, Estimation of Lightship Mass; I	Design of Hull For	m, Lines Plan,					
Stern and Ste	m Contours; General Arrangement; Freeboard and	Load Line Regula	ation, Tonnage					
Measurement								
Expected O	utcome:							
Upon succe	sstul completion of the course, the student wi	ll be able to un	derstand and					
demonstrate	knowledge on:							
1. Ba	asic tools and methodologies used in the ship design j	process.						
11. Es	timating suitable dimensions for a new ship desi	gn, to carry out	checks on its					
ca	pacity, mass balance compliance with statutory	regulations, and	to assess its					
ec	onomic viability.	1 1 .0						
111. In	terpretation and application of statutory regulation	ons and classific	ation rules in					
pr	eparation of General Arrangement drawings.							
	atutory and regulatory requirements in ship design.	na a snace belon	ad ahin which					
v. De	esign process to subdivide and layout a smp ensuri	ng a space balance	ted snip which					
Toxt Pooks								
1 DGN	A. Watson: Practical Ship Design: Elsevier Ocean En	gineering Book S	arias 2002					
1. D.O.N 2 Rober	t Taggart: Ship Design & Construction: SNAME	gineering book St	cifes 2002.					
Defenence I	Paaka							
	books:	lathada Taala and	Applications					
1. Apost	olos Papanikolaou et al, Kisk-Based Ship Design - W	ieulous, 100is and	i Applications,					
	Junnar: Introduction to Naval Architecture, Butterwo	rth Usinamann						
$\begin{array}{c} 2. \text{E.C. I} \\ 3 \text{Lewis} \end{array}$	E U: Principles of Naval Architecture (2nd Rev.) V	~ 1 III. SNAME						
3. Lewis	POL Consolidated Edition	or. III, SIVAME						
5 Martin	Stonford: Maritime Economics: Routledge							
6 Raws	on and Tupper: Basic Ship Theory Vol Land II: Butte	erworth-Heineman	n					
7 S C	Misra: Design Principles of Ships and Marine structu	res CRC Press 20	016					
8 Schne	ekluth H : Ship Design for Efficiency and Economy:	Butterworths	010					
9. Thom	as Lamb: Ship Design & Construction, SNAME 200)3						
	r							

Course plan			
Module	Content	Hours	Sem. Exam Marks
Ι	Introduction to Ship Design: General Aspects of Marine Activities, Transportation of Cargoes, Marine Services & Operations, Marine Industries.	5	15%
	Engineering Economics in Ship Design: Economic Criteria, Initial Cost, Operating Cost, RFR; Owners Requirements.	5	
II	Methods of Ship Design: Design Using Basic Type Ships, Design Using Coefficients, Design Using Iteration Methods; Design Spiral; Design Categories - Dead-Weight Carrier, Capacity Carrier, Linear Dimension Ship.	6	15%
	Ship Design Parameters: Displacement, Displacement Coefficient, Displacement Equation, Volume Equation, Solution of the Cubic Equation.	5	1370
FIRST INTERNAL EXAM			
III	Ship Main Dimensions: Length, Breadth, Depth, Draught, Form Coefficients; Shape Of The Hull; Estimation Lightship Mass – Steel Mass, Outfit Mass, Engine Plant Mass; Dead Weight.	6	15%
IV	Design of Hull Form: Generation of Lines Plan, Conventional Methods, Distortion of Existing Form, Stem and Stern Contours, Bulbous Bow & Recent Developments.	5	15%
SECOND INTERNAL EXAM			
V	General Arrangement: Subdivision of Ship's Hull, Arrangement of Spaces, Arrangement of Tanks, Superstructure and Deckhouses, Arrangement of Engine Plants, Cargo Handling Capacity.	7	20%
	Hold Capacity and Stowage Factor.	5	
	Freeboard and Load Line Regulations: Stability – Stability Booklet, IMO Regulations, Checks on Stability, Trim.	5	
VI	Tonnage Measurement: Tonnage Measurement of Ships, Suez Canal and Panama Canal Special Tonnage System.	2	20%
	Influence of Stability, Resistance, Propulsion and Ship Hydrodynamics Factors on Ship Design	5]
	END SEMESTER EXAM		

Maximum Marks : 100

Exam Duration: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
 - Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name:	L-T-P-Credits	Y	ear of
code			Intr	oduction
SB303	STRUCTURAL DESIGN OF SHIPS	2-1-0-3	,	2016
Prerequisi	te: Nil			
Course O	bjectives:			
• To	provide an overview of functional requirement of ship s	structures and to	impart	
kno T	wledge on various structural components of ships.			
• 10	understand various structural arrangements in a ship.	I A A A		
Syllabus:	ALL ADDUL NA			
	n to Ship structures, Structural strength requirement	nt of ships, Fra	aming	systems,
Structural	components; Bottom Structure, Machinery Seats, Shel	I Plating, Bulkhe	eads, W	atertight
Doors, Tai	iks, Pillars; Decks, Hatches, Superstructure, End Struc	ctures; Machiner	y seat,	Midship
Section of	Various Types of Ships, Structural Design Features of S	Specialized Vess	els.	
Expected	Outcome:	11.		
Upon suc	cessful completion of the course, the student will b	e able to:		
1.	Understand the functions and design considerations of	of various structu	iral con	nponents
	of ships.	1 11 1	1	1.
11.	Understand the arrangement of bottom structure,	shell plating	and w	atertight
	bulkneads of a snip.	<i>, ,</i>		
111. :	Understand the structural arrangements in fore and art	construction.		
1V.	Understand the structural design features of specialized	d vessels.		
1 ext Boo	KS:			
	Eyres and G J Bruce; Ship Construction, Butterwoth H	einemann, 2012.	A	
2. KO	bert Taggart(Ed); Ship Design & Construction; The S	society of Naval	Archit	ects and
Ma	rine Engineers, New York, 1980.			
Reference	e Books:	· ·	a · •	000
1. D.C	J.M. watson; Practical Ship Design; Elsevier Ocean En	gineering Book	Series 2	2002,
2. K. 1	N. Newton; Practical Construction of War Ships, Longn	nans, 1970.		
3. Y I	sai; Marine Structural Design; 2003, Elsevier,	A Durational Cruid	. f F.	•••••
4. Yas	sunisa Okumoto et al; Design of Ship Hull Structures -	A Practical Guid	e for El	ngineers,
Spr	inger			
	Course Plan			
	2014	/		Sem
Module	Content	H	lours	Exam
				Marks
	Introduction to Ship Structures- Development of S	Ship Types-		
	Dry Cargo Ships, Container Ships, Barge-Carrying Sl	nips, Ro-Ro	2	
	Ships, Bulk Carriers, Car Carriers, Oil Tankers, Passe	enger Ships,	-	
T	Cargo Handling Equipments.			15%
1	Shipbuilding Technology- Process of Shipbuildin	ig, Role of	1	1.5 /0
	Classification Societies.		T	
	Structural Requirements- Longitudinal Strength,	Transverse	1	
	Strength, Local Strength.		1	

	Framing System- Longitudinal Framing, Transverse Framing,	1	
	Combined Framing.	1	
	Basic Structural Components- Stiffeners, Longitudinals, Frames,	1	
	Stringers, Brackets.	1	
	Bottom Construction- Functions; Keel- Flat, Duct, Bar.		
	Single-Bottom Structure– Components.		
	Double-Bottom Structure- Inner Bottom Plating, Floors,		
	Transversely Framed Double Bottom, Longitudinally Framed		
т	Double Bottom, Additional Stiffening in the Pounding Region,		
11	Testing of Double-Bottom Compartments.	6	15%
	Machinery Seats.		
	Shell Plating- Bottom Shell Plating, Side Shell Plating.		
	Local Strengthening of Shell Plating- Additional Stiffening for		
	Panting, Strengthening for Navigation in Ice.		
	Bilge Keel Structure.		
	FIRST INTERNAL EXAM		•
	Bulkheads- Spacing of Watertight Bulkheads, Construction of		
	Watertight Bulkheads, Testing of Watertight Bulkheads.		
	Watertight Doors.		
III	Tanks- Deep Tanks, Construction of Deep Tanks, Testing of Deep	6	15%
	Tanks, Topside Tanks.		
	Shaft Tunnel- Construction of the Shaft Tunnel.		
	Pillars- Spacing of Hold Pillars, Pillar Construction.		
	Decks- Deck plating, Deck Stiffening.		
	Hatches- Hatch Coamings, Hatch covers, Bulwarks -		
IV	Construction of Bulwarks.	6	15%
14	Superstructure & Deckhouses- Forecastle, Bridge Structures,	0	1370
	Poop Structure, Superstructures in Passenger Ship, Weathertight		
	Doors.		
	SECOND INTERNAL EXAM		1
	End Structures – Introduction.		
	Fore End Structure- Stem, Bulbous Bows, Chain Locker,	4	
	Construction Of Chain Locker, Hawse Pipes, Bow Thruster Units.		4
V	Aft End Structure - Stern Construction, Stern Frame; Rudders-		20%
	Rudder Construction Rudder Pintles, Rudder Stock, Rudder	5	
	Bearing, Rudder Trunk; Steering Gear; Sterntube, Shaft Bossing	*	
	And 'A' Brackets.		
	Midship Section Of Various Types Of Ships - General Cargo,		
	Bulk Carrier, RO-RO, Container Ship, Tanker, Container Ship	<u>_</u>	2024
VI	etc.	9	20%
	Structural Design Features of Specialised Vessels -		
	Submarines, LNG Carrier.		
	END SEMESTER EXAM		

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name	L-T-P-Credits	Y	ear of		
code	code Introduction					
SB304	SB304 STRENGTH OF SHIPS-II 2-1-0-3 2016					
Prerequis	ite : SB307 Strength of ships - I					
Course (Objectives:					
• To	impart knowledge on plated structures used in ship design.					
• To	provide knowledge on analysis of submarine structure.					
• To	impart knowledge on torsional behaviour of ship structures	AAA				
• To	impart knowledge of ultimate strength of ship structures.	MIVI				
• To	impart knowledge on vibration analysis and the methods to	minimise vibrati	on.			
Syllabus	rennologie					
3D Model	ling of Ships Structures and Analysis, Longitudinal Streng	gth Analysis Duri	ng La	unching,		
Docking,	Grounding and Collision, Influence of Super Structure on	Longitudinal Stre	ngth;	Analysis		
of Submar	ine Structure; Torsion of Ship's Hull, Ultimate Strength Ar	alysis; Vibration	Analy	sis.		
Expected	Outcome:					
Upon suc	cessful completion of the course, the student will be a	ble to:				
i. Un	derstand the principles of 3D modelling of structures used i	n ship structures.				
ii. Un	derstand and demonstrate knowledge in analysis of submar	ine structures.				
iii. As	sess ultimate strength of plates, beams and structures.					
iv. Ch	aracterise the vibrational features of plated structures.	0				
Text Books:						
1. Le	1. Lewis E. U.; Principles of Naval Architecture, SNAME, 1989					
2. Ov	en Hughes; Ship Structural Analysis and Design, SNAME	, 2010				
3. Tu	pper E. C.; Introduction to Naval Architecture, Butterworth	Heinmann				
Reference	e Books:					
1. DC	GM Watson; Practical Ship Design, Elsevier Ocean Enginee	ring Book Series.				
2. Mu	ickle W.; Strength of Ships, Edward Arnold, 1967					
3. Y. Bai; Marine Structural Design, 2003, Elsevier.						
4. Ya	suhisa Okumoto et al; Design of Ship Hull Structures - A	Practical Guide	for Er	ngineers,		
Springer.						
	Course Plan					
	2014			Sem.		
Module	Content	He	ours	Exam		
				Marks		
	3D Modelling of Ship Structures and Analysis , Small	Deflection				
Ι	Analysis of Thin Plates with Transverse Loads and Comb	ined Loads;	8 1			
	Large Deflection Analysis; Buckling of Thin Plates; A	Analysis of	C			
	Stiffened Plates, Buckling of Stiffened Plates.					
	Longitudinal Strength Analysis: During Launching	, Docking,	ıg,			
II	Grounding and Collision.		6	15%		
	Influence of Super Structure on Longitudinal Strength					
	FIRST INTERNAL EXAM					

	Analysis of Submarine Structure- Membrane and Bending		
III	Theory; Equations of Cylindrical Shells; Analysis of Stiffened	7	15%
	Cylindrical Shells; Analysis of Frames and Bulkheads; Buckling of		1370
	Unstiffened and Stiffened Cylindrical Shells.		
	Torsion of Ship's Hull - Determination of Shear Centre and Shear		
TV.	7	150/	
IV	Theory of Restrained Torsion; Influence of Deck Transverse and	/	15%
	Ship Ends.		
SECOND INTERNAL EXAM			
Ultimate Strength Analysis- Application of Plastic Theory to Ship			
	Structures; Basics of Plastic Theory and Definitions; Safety		20%
V	Factors; Damage and Collapse of Ship Structures; Ultimate		
	Strength of Hull Girder; Application of FEM for Ultimate Strength		
	Analysis.		
	Vibration Analysis: Introduction to Hull Structure Vibration,		
VI	Modes of Hull Structure Vibration, Sources of Vibration and	7	2004
V I	Measures for Control of Vibration; Vibration Analysis of Beams,	/	20%
	Boundary Conditions in Hull Structure Vibration.		
	END SEMESTER EXAM		

Maximum Marks : 100

Exam Duration: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

Estd.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course o	code	Course Name:	L-T-P-	Y	ear of	
	Credits Introduction					
SB30	SB305OFFSHORE STRUCTURES2-1-0-32016					
Prerequi	isite :	Nil				
Course C	Object	ives:				
• Te	o intro	duce the domain of offshore engineering, its history ar	nd signifi	cance.		
• To	o intro	duce the oceanic environment.				
• To	o intro	duce the loads acting on floating and fixed structures.	, the meth	nods of ca	alculation	
of	t these	loads and response of structures.	TIV	1		
	o intro	duce offshore installation methods.	A			
Synabus	: 1 Day	alanmant of Officham Structures Expection Configure	tion P 7	France of	Offebage	
Historica		elopment of Offshore Structures-Function, Configura	α	Types of	Offshare	
Structure	s- Nov	vel & Small Field Offshore Structures- Oceanic Envir	onment-	Loads on	Offshore	
Structure	s- Res	ponse of Structures- Introduction to fixed offshore pl	attorm de	esign- Inti	roduction	
to floating	g offsl	nore platform design- Offshore Installation.				
Expected	l Outo	come:				
Upon suc	cessfu	al completion of the course, the student shall be able to):			
i.	Den	nonstrate a general awareness of offshore engineering	by being	g familiar	with the	
	tern	is, definitions, types of structures and their application.				
11.	Den	icability ragima	waves, v	vave the	bries and	
iii	Den	constrate a basic understanding of the sea loads (wind	wave &	current)	acting on	
	offs	hore structures and their applicability regime.	, <i>wave</i> œ	current)		
iv.	Den	nonstrate basic understanding of the offshore design pr	ocess.			
v.	Ider	tify and list the function of the different component	ts of con	ventional	offshore	
	stru	ctures.				
vi.	Den	nonstrate overall awareness of offshore installation met	thods.			
Text Boo	oks:					
1. S	Subrata	a. K. Chakrabarti; Handbook of Offshore Engineering	Vol I & I	l; Elsevier	ſ.	
2. A	Angus	Mather; Offshore Engineering- An Introduction; With	erby & Co	о.		
Referenc	e Boo	ks:				
1. D	.V Re	eddy, A. S. J Swamidas; Essentials of Offshore Stru	<mark>icture</mark> s- I	Framed &	c Gravity	
Pl	latforn	ns; CRC Press.				
2. Mohammed A El Reedy; Offshore Structures- Design, Construction and Maintenance;				ntenance;		
Gulf Professional Publishing.						
3. S.K Chakrabarti; Hydrodynamics of Offshore Structures; WIT Press.						
4. William L. Leffler, Richard Pattarozi, Gordon Sterling; Deepwater Petroleum Exploration					ploration	
& Production – A Non Technical Guide; PennWell Books.						
		Course Plan				
					Sem.	
Module		Content		Hours	Exam	
					Marks	
	Histo	prical Development of Offshore Structures: Definition	ition of			
Ι	Offs	nore structures. Brief Historical Development Selec	tion of	5	15%	
	21151					

[
	Deepwater Production Concepts, Offshore Disasters; Deepwater		
	Challenges; Functions of Offshore Structures; Offshore Structure		
	Configurations; Bottom Supported Fixed Structures, Compliant		
	Structures, Floating Structures; Classification Societies &		
	Industry Standards.		
	Novel & Small Field Offshore Structures: Bottom Supported		
	Systems, Neutrally-Buoyant Floating Systems, Positively Buoyant	3	
	Floating Systems.	A	
	Oceanic Environment (Basic Theory Only): Introduction; Ocean	1	
	Water Properties-Density, Viscosity, Salinity & Temperature;		
	Wave Theory- Linear, Second Order Stokes, Fifth Order Stokes,	10	
	Stream Function, Stretching Formulae for Waves at SWL,		
	Applicability of Wave Theories, Wave Group, Series		
	Representation of Long Crested Waves; Wave Breaking; Internal		150/
П	Waves; Sea Spectrum (Definition Only), Directional Spectrum	6	15%
	(Definition Only); Sea States; Wave Driven Current-Steady		
	Uniform Current, Steady Shear Current, Combined Current &		
	Wayes: Wind & Wind Spectrum, Wind Speed: Offshore		
	Environment by Location.		
	FIRST INTERNAL EXAM		
	Introduction- Dimensionless Parameters: Gravity Loads:		
	Hydrostatic Loads: Resistance Loads: Current Loads- Current		
	Drag & Lift Force Blockage Factor in Current: Steady &		
	Dynamic Wind Loads on Structures: Wave Loads on Structures-		
	Morison Equation Forces on Oscillating Structures Combined	1	
Ш	Wave and Current Loads Froude-Krylov Force on Structure	8	15%
	Wave Diffraction Force on Structure Added Mass and Damping	0	1570
	Coefficients: Applicability of Morison Force Vs Diffraction		
	Force: Steady Wave-Drift Force – Steady Drift Potential Force		
	Viscous Drift Force: Slow Drift Wave Forces: Varving Wind		
	Load: Impulse Loads- Wave Slamming Wave Breaking Wave		
	Run-Un		
	Response of Structures (Basic Theory Only): Structure Motion		
	in One Degree: Transient Response of Structures: Forced		
	Linearly Damped System: Non- Linearly Damped Structure		
	Response: Motions of Floating Structure: Interaction of Two		
IV	Floating Structures: Slowly Varving Response: Simplified	6	15%
	Computation of Slow Drift Oscillation: High Frequency		
	Response: Types of Hydrodynamic Damping of Floating Systems:		
1	, , , , , , , , , , , , , , , , , , ,		
	Applicability of Response Formulae.		

	Introduction to Fixed Offshore Platform Design: Introduction			
	to field development, Design Spiral and Field Development			
	Timeline, Factors That Drive Concept Selection, Field			
	Development Design Phases; Major Structural Components of a	4		
	Jacket Platform; Types of Loads on a Fixed Platform; Detailed	4		
	Structural Design Schedule; Selection of Design Parameters			
V	(Basics Only); Selection of Member Sizes; Deck Leg & Deck		20%	
	Structure; Jacket Bracing Configurations.	A		
	Introduction to Floating Offshore Platform Design: Types of	1		
	Floating Platforms- Functions of Floating Platforms, Motions of			
	Floating Platforms, Concept Selection; Design of Floaters-	2		
	Functional Requirements, Configuration Proportions, Weight			
	Control. Stability. Co-ordinate Systems & Transformations.			
	Offshore Installation: Introduction: Fixed Platform			
	Substructures- Types, Jackets, Compliant Towers, Gravity Base			
	Structures: Floating Structures- Types, Installation of FPSOs			
	Installation of Semi Submersibles Installation of TLPs Spar			
VI	Installation: Load Out Methods: Transportation- Configuration	8	20%	
	Barges & Heavy Lift Ships (introduction only) Sea			
	Eastenings/Tie Downs: Platform Installation Methods Heavy			
	Lift Launch Mating			
	END CEMECTED EXANA			
END SEMESTER EXAM				

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course c	ode Course Name	L-T-P-Credits	Ye Intro	ar of duction
SB30	6 MATERIAL SCIENCE	3-0-0-3	2	016
Prerequi	site : Nil			
Course	Objectives:			
1. To p	ovide fundamentals of material structure and behaviour			
2. To u	nderstand the causes of metal failure and deformation.			
3. To d	etermine properties of materials and develop an awaren	ess to apply this	know	ledge in
mate	rial design.	AIVI		
Syllabus	TECHNOLOGIC	A		
Crystallo	graphy, Crystal Imperfections, Types of bonds, Thermodyn	namics and Kineti	cs in n	naterials
behavior,	Phase transformation and Phase diagram, TTT diagram	n, Heat Treatmer	nt, Meo	chanical
Propertie	s of Materials and Testing, Types of failure, Structural Ma	terials, Materials	used in	1 Ships.
Classifica	tion of Steel in Shipbuilding.			
Expecte	d Outcome:	11.		
Upon su	ccessful completion of the course, the students will be	able to:	• •	• ,
1.	Improvise a material for a given purpose by ta	king into cons	Ideration	ons its
	mechanical properties, chemical properties, cost, ava	ilability etc.		
11. ;;;	Classify different kind of materials seen around then Belete performance and behavior of a material under	different eineur	matana	aa with
111.	its Crustal structure and tune of bonding	anterent circui	instanc	es with
137	List materials used in shipbuilding and their applicat	ions		
IV.	Classify steels used in shipbuilding	10118.		
V. Toyt Bo	classify steels used in shipbunding.			
1 I	W Van Vlack: Elements of Material Science: Addison We	slev		
1. L	Raghavan: Material Science and Engineering: Prenti	re Hall of India		
2. V 3 W	D Callister: Material Science and Engineering, Field	02		
Referen	re Books:	02.		
1. B	K. Agarwal: Introduction to Engineering Materials: Tata M	cGraw Hill.		
2. D	J Evres: Ship Construction: Elsevier.	· · · · · · · · · · · · · · · · · · ·		
3. Fi	scher; Materials Science for Engineering Students; Elsevier			
4. G	K.Narula; Material Science; Tata McGraw Hill.			
5. Jo	hn Carlton; Marine Propellers and Propulsion; Elsevier.			
6. O	P. Khanna; A Text Book of Material Science & Metallurgy	; DhanpatRai & S	ons.	
7. S.	C Misra; Design Principles of Ships and Marine Structures	; CRC Press –Ta	ylor &	Francis
Group.				
8. Yasuhisa Okumoto; Design of Ship Hull Structures; Springer.				
Course Plan				
				Sem.
Module	Content]	Hours	Exam
				Marks
Т	Crystallography: Atomic Structure; Crystal Structure- A	tomic Packing	2	15%
1	in Crystal; Miller Indices; Structure of Metal, Alloy,	Polymer and	4	1.5 /0

	Ceramic.			
	Imperfections in Crystals: Point, Line, Surface and Volume Defects;	2		
	Types of Bonds, Influence of Bond Type on Engineering properties.	3		
	Diffusion: Mechanism of Diffusion in Crystals, Types of Diffusion, Fick's laws	2		
	Solidification: Nucleation Crystallisation - Single Crystal and Poly			
	Crystalline Materials Polymorphism Gibbs Phase Rule Hume-Rothery	2		
	Rules	2		
п	Phase Diagram: Phase Rule Lever Rule: Methods Used to Determine a		15%	
	Phase Diagram: Isomorphous System: Eutectic: Eutectoid, Peritectic	3	10 /0	
	Phase Diagrams.	U		
	Iron- Carbon Equilibrium Diagram.	2		
	FIRST INTERNAL EXAMINATION			
	Heat Treatment: Purposes and Types; TTT Diagram; Annealing,			
	Normalising, Quenching, Tempering Process, Austempering,	3		
	Martempering.		1 50/	
111	Hardenability of Steels, Jomini Test, Surface Heat treatment; Case		15%	
	Hardening, Carburizing, Cyaniding, Nitriding, Flame Hardening,	3		
	Induction Hardening; Martensite Formation.			
	Deformation of Metals: Elastic, Anelastic and Viscoelastic	2		
	Behaviour; Plastic Deformation; Mechanism of Slip & Twinning.	2		
IV	Precipitation hardening, Age Hardening- Recovery and	2	15%	
1,	Recrystallisation.	2	1570	
	Mechanical Properties of Metals: Stiffness, Young's modulus,	2		
	resilience etc.	_		
	SECOND INTERNAL EXAMINATION			
	Failure of Metals: Types of Failures- Ductile, Brittle, Fatigue and	2		
			2004	
V	Stress Strain Diagram, Ductile Brittle Transition and Griffith's Theory.	2	20%	
	Fatigue failure, Mechanism of Creep, Creep Curve.	1		
	Testing of Materials: Tensile, Fatigue, Creep & Hardness Tests.	3		
VI	Ship Structural Materials: Classification of Steel, Different Types of	3		
	Steel.			
	Sintering	2		
	Aluminium & Titanium Alloys used in Shipbuilding- Propeller		20%	
	materials.	2		
	Selection of Materials: Specification; Classification Society Rules,	2		
	National and International Standards for Different Class of Steels.	2		
END SEMESTER EXAM				

Maximum Marks: 100

Exam Duration: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name	L-T-P-Credits	Ye	ar of
code			Intro	duction
SB307	STRENGTH OF SHIPS- I	2-1-0-3	20	016
Prerequis	ites : SB201 Mechanics of solids			
Course C	Objectives:			
•	To impart theoretical knowledge in strength	n of ship structures.		
•	To familiarize design and optimization of si	hip structures.		
•	To provide practical experience in solving p	problems in ship str	ucture des	sign.
Syllabus:	ALLADUULI	VILIU	V I	
Introductio	on to Strength of Ships, Forces Acting on	a Ship, Distortion	of Ship S	Structure,
Function of	of Ship Structure, Design Procedure of Ship	Structure, Failure	Modes; L	oads and
Moments .	Acting on Ship Structures in Still Water, Lo	ad, Weight & Buoy	ancy Cur	ve, SF &
BM Curve	; Loads in Seaway, Wave Loads, Short Ter	m and Long Term	Loads, SI	lamming,
Deck Wet	ness; Longitudinal Strength, Application	of Beam Theory,	Section 1	Modulus;
Transverse	Strength; Analysis of Bulkheads.			
Expected	Outcome			
Upon suc	cessful completion of the course, the st	udent will be abl	e to dem	onstrate
basic kno	wledge and understanding of:	, <u>1</u> ·		
1. 	Static and dynamic loading on ship hull due	e to cargo and envir	onment.	
11. 	Longitudinal and transvers strength consider	erations in ship strue	ctural desi	gn.
111.	Application of bending theory in structural	design of ships.		
1V.	Calculation of bending stress and shear st	ress distribution in	a cross s	ection of
Tort Doo	smp.			
	KS	Society of Nevel	Architact	uras and
I. Le	rine Engineers 1980	, Society of Inaval	Architect	ules allu
$2 \Omega \mathbf{x}$	anne Engineers, 1969.	lav & Song 1083		
2. Uw 3. Tu	oper E. C. Introduction to Naval Architectur	re FI SEVIER 5ed	2013	
Reference	e Books:	e, LESE VIER, Sed	., 2013.	
1 Mr	ckle W : Strength of Shin's Structures Edwa	ard Arnold 1967		
2 Pra	ctical Ship Design: DGM Watson: Elsevier (Ocean Engineering	Book Seri	es 2002
2. 11a 3. YI	Bai: Marine Structural Design 2003: Elsevier	r	Dook Den	05 2002.
4 . Ya	suhisa Okumoto et al: Design of Ship Hul	1 Structures - A P	ractical G	huide for
En	gineers, Springer.			
	Course Plan	1		
<u> </u>				Sem.
Module	Content		Hours	Exam
				Marks
	Introduction to Strength of Ships- List	of Forces Acting		
	on a Ship, Distortion of Ship Structure, I	Function of Ship		
IStructure, Design Procedure of Ship Structure, Modes of Failure, Idealization of Ship as Hull Girder.715				

	Loads and Moments Acting on Ship Structures in Still					
TT	Water-Loads, Weight and Weight Distribution, Buoyancy					
11	and Buoyancy Distribution; Load Curve, Shear Force 7					
	Curve, Bending Moment Curve, and Deflection Curve,					
	Effect of Thermal Loads.					
	FIRST INTERNAL EXAM					
	Loads in a Seaway- Moments Due to Regular Waves and					
	Oblique Waves, Representation of Irregular Seaway, Short	A				
III	Term and Long Term Distribution of Loads, Spectral	7	15%			
	Approach to Response of Ship Structures, Effect of	T.				
	Slamming and Shipping of Green Seas.					
	Longitudinal Strength- Definition, Application of Beam					
IV	Theory and Hull-Girder Section Modulus; Calculation of	7	15%			
	Shear Stress Distribution in Cross Section.					
	SECOND INTERNAL EXAM					
	Transverse Strength- Definition, Moment Distribution					
V	Method and Matrix Method for the Analysis of Transverse	7	20%			
	Frames.					
	Design of Bulkheads- Design of Transverse Bulkheads,					
VI	Design of Longitudinal Bulkheads, Design of Corrugated	7	20%			
	Bulkheads.					
	END SEMESTER EXAM					

Estd

2014

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course c	ode	Course Name	L-T-P-Credits	Ye	ar of duction
SB309	8	COMPUTER AIDED DESIGN DRAFTING	3-0-0-3	2	016
50500	J	& MANUFACTURING	5-0-0-5		010
Prerequi	site :	Nil			
Course Objectives:					
• To	o give	an overview of the CAD/CAM process.			
• To	o intro	oduce the fundamental concepts in Numeric Control.	AAA		
• To	o intro	oduce CNC part programming.	AIVI		
• To	o give	an overview of Computer Aided Process Planning.	AL		
• To	o give	an introduction to Industrial Robotics.	AL		
Syllabus:		LININ/EDCITY	1		
Evolution	of C	AD. CAM & CIM- Interactive Computer Graphics -N	Networking for C	AD- Wi	reframe.
Surface &	k Soli	d Modelling- Naval Architecture Design Software-	Numerical Cont	rol- Man	ual Part
Programn	ning-	Computer Aided Part Programming- APT Lans	guage-Computer	Aided	Process
Planning-	Gro	pup Technology- Flexible Manufacturing Systems-	Basic Compone	ents of a	Robot-
Robot Co	ntrol-	Applications of Robots.			
Expected	Out	come:			
Upon suc	cessfi	al completion of the course, the students will be able to	o :		
i.	Den	nonstrate awareness of major Naval Architecture	software packa	ges used	l in the
	indu	istrv.	1		
ii.	Den	nonstrate basic understanding about the function	ing of Numerio	cally Co	ontrolled
	Mac	chine tools.	6)	
iii.	Prep	pare simple part programs using both manual as	s well as comp	outer aid	led part
:	Dor	gramming memous.	no occor nionnin	and	flowible
1V.	Den	nonstrate understanding of computer aided p	rocess planning	g and	liexible
	Dor	nuracturing systems.			
V. Toyt Doo		nonstrate an understanding of basic terminology in for	Joues.		
$1 \text{ ext } \mathbf{D}00$	KS:	abay Introduction to Robotics, Machanics and Control	, Doorson		
		r M.B. Emory W. Zimmers, In CAD/CAM: Prontice I	, Fearson.		
2.01	orom	Koron Numerical Control of Machine Tools: McGra			
J. 10 Deference		koren, Numerical Control of Machine 10018, McOra	W HIII.		
		DKS: D. Croover: Automation, Droduction Systems & Con	nnutar Integrated	Monufe	oturing
I. MI Dr	ontio	F. Gloover, Automation, Floduction Systems & Con	inputer integrated		icturing,
	Dod	halrichnen S. Subremenien V. Beius CAD/CAM		an Inton	mational
2. P. Kadnakrishnan, S.Subramanian, V. Kaju; CAD/CAM/CIM; New Age International					
Publishers. 2 DN Deer CAD/CAM Dringinker and Applications. Tate M.C. Util					
3. P.N.Rao; CAD/CAM Principles and Applications; Tata McGraw Hill.					
		Course Fran			Sem
Modula		Contont		Hours	Fvom
mouule		Contelli		110015	Marke
I	Com	puters in Design & Manufacturing: Evolution of	CAD. CAM &	3	15%

	CIM; Traditional Design Vs Computer Aided Design; Workstations;			
	Interactive Computer Graphics; Networking of CAD Systems.			
	Computer Aided Design: Wireframe, Surface & Solid Modelling,			
II	Engineering Analysis, Design Review & Evaluation, Automated	3	15%	
	Drafting, Introduction to Major Naval Architecture Design Software.			
	FIRST INTERNAL EXAM			
	Introduction to Numerical Control: Need, Advantages &			
TT	Disadvantages; Classification- Point to Point, Straight Cut & Contouring	0	150/	
111	Positioning; Incremental & Absolute Systems; Open Loop & Closed	8	15%	
	Loop Systems; CNC & DNC.			
	Part Programming: Part Programming Fundamentals; Manual			
	Programming-NC Coordinate Systems and axes, Tape Format, Sequence			
	Number, Preparatory Functions, Dimension Words, Speed Word, Feed	5		
	Word, Tool Word, Miscellaneous Functions, Simple Manual			
IV	Programming Exercises.		15%	
	Computer Aided Part Programming: Concept & Need for CAP; CNC			
	Languages; APT Language Structure- Geometry Commands, Motion	~		
	Commands, Post Processor Commands, Compilation Control	5		
	Commands, Simple Programming Exercises.			
	SECOND INTERNAL EXAM			
	Computer Aided Process Planning: Traditional Process Planning Vs			
	CAPP; General Methodology of Group Technology; Variant and			
	Generative Process Planning Methods; Artificial Intelligence in Process			
V	Planning; Process Planning Software.	9	20%	
	Flexible Manufacturing Systems: Introduction; Types; Concepts;			
	Need & Advantages of FMS; Cellular Manufacturing; JIT and GT			
	Applied to FMS.			
	Introduction to Robotics: Overview of robotics; Basic Components-			
	End Effectors, Sensors; Control of Actuators in Robotic Mechanisms			
VI	(basic only); Control of Robo Joint- Stepper Motor, Direct Drive	0	200/	
	Actuators, Hydraulic & Pneumatic Systems (Basics Only); Robot	9	20%	
	Applications-Material Transfer, Machine Loading & Unloading, Pre-			
	Cutting Operations, Assembly, Welding & Inspection.			
END SEMESTER EXAM				

Maximum Marks : 100 PART A

Exam Duration: 3 hours

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI. **PART B**
- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name:	L-T-P-	Y	ear of	
code		Credits	Intro	oduction	
SB309	PROGRAMMING & DATA STRUCTURES	2-1-0-3		2016	
Prerequi	site: Nil				
Course C	Objectives:				
•	To impart the basic concepts of problem solving using a c	computer.			
•	To learn about the structure of C programming language.				
•	To construct and analyze various data structures and abst	ract data types	incluc	ling lists,	
	stacks, queues, trees and graphs.	ATA1			
Syllabus	TECHNOLOGIC	A			
Introduct	on to computer programming- Algorithms and Flow c	harts- C Fund	lamen	tals- I/O	
Statemen	ts- C program Structure- Decision Making Statements and E	Branching- Arra	ays- F	unctions-	
Pointers-	Structures- Data Structures- Array & Linked List- State	ck- Queue- C	irculaı	Queue-	
Priority Q	ueue- Trees- Graphs.				
Expected	Outcome:				
On succe	ssful completion of the course, the student shall be able to:				
i.	Write, compile and debug programs in C language.				
ii. 	Design programs involving decision structures, loops and	functions.		1.1.	
111.	master a variety of Abstract Data Type (ADT) and	a data structi	ires a	ind their	
iv.	Apply and implement algorithm design techniques a	nd data struc	tures	to solve	
	problems.				
v.	Demonstrate an ability to design and implement a com	puter-based sy	/stem,	process,	
	component or program to meet desired needs.				
Text Boo	ks:				
1. B	yron S.Gottfried; Programming with C; Tata McGraw Hill.				
2. G	S Baluja; Data Structures Through C; Dhanpat Rai & Co.				
Referenc	e Books:				
I. E.	Balaguruswamy; Programming in C; McGraw Hill.	G G 1			
2. H	prowitz, Sahni & Mehta; Fundamentals of Data Structures in	n C++; Galgott	ia Pub	lishers.	
3. Sa	imanta; Classic Data Structures; PHI.				
4. Y	ashwant Kanetkar; Let us C; BPB.	1			
	Course Plan			Same	
Madula	2014	TT		Sem.	
Module	Content		JULS	Exam	
	Introduction to Computer Programming: Problem Solvin	na Usina		WAFKS	
	Algorithms and Flow Charter Fastures of a Good Drogram	ig Using	2		
Introduction to C; Variables; Operators in C; I/O Statements; Basic 5 15					
					1
Desision melaine Statements if a it 1 Constitution 1 Const					
	Decision making Statements; if, switch, Conditional Operators; 4				
	The Loop Control Structure: while do while for Nested for	or loops	3	150/-	
11	The Loop Control Structure, while-do, while-for, hested to	n noops.	5	1370	

	Break and Continue Statement; Arrays- One-dimensional arrays-		
	Declaration and Initialization, Two-dimensional arrays- Declaration	2	
	and Initialization.		
	Strings-Declaration and initialization; I/O operations on Strings;	2	
	Standard Library Functions on Strings.	-	
	Functions-Need for Functions, Definition; Function Declaration;	3	
	Function Call; Category of Function.	5	
	Recursion.	1	
	FIRST INTERNAL EXAM		
	Pointers-Declaration & Initialization; Accessing a Variable	2	
	Through Pointers; Pointers & Arrays.	-	
Ш	Structure-Defining a Structure; Declaration and Initialization;		15%
111	Accessing Structure Members; Array of Structures; Comparison of	3	15 /0
	Structures and Arrays.		
	Pointers and Structures.	2	
	Introduction to Data Structures; Definition of Data Structures; Need	1	
	for Data Structures; Data structure Operations.	1	
IV	Linear Data Structures; Array and Linked List- Definition and		15%
	Implementation, Comparison between Linked List and Arrays,	3	
	Types of Linked List.		
	SECOND INTERNAL EXAM		
V	Abstract Data Type; Stack and Queue, Implementation Using Array	4	20.9/
v	and Linked List, Application; Circular Queue; Priority Queue.	-	20 /0
VI	Non Linear Data Structure; Tree-Definition; Binary Tree-	3	
	Representation Using Array and Linked List; Traversals.	3	20.04
	Graph-Representations-Traversals-Depth First Search, Breadth	2	20%
	First Search.	4	
	END SEMESTER EXAM		

2014

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

code			T (1 (1			
CD221		0.0.0.1	Introduction			
SB331	MARINE HYDRODYNAMICS &	0-0-3-1	2016			
Droroquisit	HIDRAULIC MACHINERI LAB					
Course Ob	iectives:					
•	To provide practical experience on various hydraulic	c machinery.				
•	To provide knowledge on carrying out marine	hydrodynamics e	xperiment and			
	calculations.	LAN				
List of Exe	rcises/ Experiments (Minimum 12 are Mandatory)	ÇAL				
1. Per <u><i>Equ</i></u>	formance Characteristic Tests on Pelton Wheel (Load t uipment: Pelton Wheel Turbine Test Rig.	test & best speed).				
2. Per <u><i>Equ</i></u>	formance Characteristic Tests on Francis Turbine (Loa <u>upment:</u> Francis Turbine Test Rig.	d test & best gate.	opening).			
3. Per ope <u><i>Equ</i></u>	formance Characteristic Tests on Kaplan Turbine (Lo ning). uipment: Kaplan Turbine Test Rig.	oad test & best g	ate, vane angle			
4. Per Cor <u>Equ</u>	formanceCcharacteristic Tests on Single Stage, Mu Istant Speed & at Variable Speed. (Actual & predicted <u>upment:</u> Centrifugal Pump Test Rig.	lti Stage Centrifi curves).	ugal Pumps at			
5. Per <u><i>Equ</i></u>	formance Characteristic Tests on S <mark>e</mark> lf-priming, Jet, Air <i>uipment: Self Priming Pump Test Rig</i> .	lift and Deep Wel	l Pumps.			
6. Per <u><i>Equ</i></u>	formance Characteristic Tests on Hydraulic Ram. <u>uipment:</u> Hydraulic Ram Test Rig.					
7. Per <u><i>Equ</i></u>	formance Characteristic Tests on Reciprocating Pump uipment: Reciprocating Pump Test Rig.	at Constant Speed				
8. Per <u><i>Equ</i></u>	formance Characteristic Tests on Gear Pump. uipment: Gear Oil Pump Test Rig.					
9. Per <u>Equ</u>	formance Characteristic Tests on Screw Pump. uipment: Screw Pump Test Rig.					
10. Imp <u>Equ</u>	10. Impact of Water jet on Flat Plate. <u>Equipment:</u> Impact of Jet on Vane Apparatus.					
11. Imp <u>Equ</u>	bact of Water jet on Curved Plate. <u>uipment:</u> Impact of Jet on Vane Apparatus.					

- 12. Prediction of Ship Hull Resistance. <u>Equipment:</u> Ship Design Software / test facilities.
- 13. Prediction of Propeller Performance. <u>Equipment:</u> Ship Design Software / test facilities.
- 14. Prediction of Ship Resistance Using Data Obtained from Model Test. *Equipment:* Ship Design Software / test facilities.
- 15. Study of Roll Decay Tests and Calculation of Roll Period. <u>Equipment:</u> Ship Design Software / test facilities.
- 16. Prediction of Sea Keeping Characteristics. <u>Equipment:</u> Ship Design Software / test facilities.
- 17. Study on Open Water Tests. <u>Equipment:</u> Ship Design Software / test facilities.
- 18. Study on Manoeuvring Performance of Ships. <u>Equipment:</u> Ship Design Software / test facilities.

Note: Only major equipments are indicated

Course Outcome:

Upon successful completion of the course, the student will be able to:

- 1. Carry out performance characteristic tests on hydraulic machinery.
- 2. Analyse the results of experiments and compare with the theoretical knowledge.
- 3. Understand the hydrodynamic model test set up and equipment.
- 4. Calculate and analysis the results of various Hydrodynamics experiments

Text Book:

- R. K. Bansal; Fluid Mechanics and Hydraulic Machines; Laxmi Publications.
- Edward V. Lewis; Principles of Naval Architecture Volume II & III.

Course codeCourse Name:L-T-P-CreditsYear of Intr			Year of Introduction	
SB332	CAD/CAM LA	ABORATORY	0-0-3-1	2016
Prerequisite :	SB308 Computer aide	ed design, drafting an	d manufacturing	
Course Objec	tives:			
1. To impart	basic training in the u	use of a Computer Ai	ded Design and anal	ysis Software
2. To impart	basic training in the u	se of modern manufa	cturing methods like	CNC and/or 3D
printer.				
List of Exerci	ses/ Experiments (M	inimum 12 Mandator	ry)	
1. Study	of a Computer Aided	Design Software (Au	toCAD/ Creo Param	etric etc)
2. Study	of Interactive Comput	er Graphics.	VALAN	1
3. Exerci	se problems in 3D m	odelling of simple ol	bjects (minimum 5)	to get familiarized with
the con	nmands.	NUILI	A	
4. Assem	bly of a protected typ	e flange coupling.	ITT	here'
5. Assem	bly of a Knuckle Join	t. V - R \	I I Y	
6. Assem	bly of a Plummer Blo	ck.	1 L L	
7. Assem	bly of a Screw Jack.			
8. Assem	bly of a 4-way tool po	ost.		
9. Assem	bly of a Feed Check V	Valve.		
10. Assem	bly of a RANS Botton	m Valve.		
11. Assem	bly of a Lathe Tail St	ock.		
12. Assem	bly of Oldham's Coup	pling.		
13. Study	of Finite Element Soft	tware (ANSYS, NAS	STRAN etc).	
14. Stress/	Deflection Analysis	of a Simply Suppo	orted Beam with P	oint Loads, Uniformly
Distrit	outed Loads and Unifo	ormly Var <mark>yi</mark> ng Loads.		
15. Stress/	Deflection Analysis	of a Cantilever Bear	n with Point Loads,	Uniformly Distributed
Loads	and Uniformly Varyin	ng Loads.		
16. Stress	Deflection Analysis o	f a vessel <mark>su</mark> bjected to	o internal Hydrostati	c Pressure.
17. Stress/	Deflection Analysis o	f a closed container s	ubjected to External	Hydrostatic Pressure.
18. Therm	al Analysis of a Plate	subjected to Boundar	ry Heating.	
19. Study	and Demonstration of	CNC Machining.		
20. Study	and Demonstration of	3D Printing.		
		(Fall		
Equipment:		ESTO,		
		A 12		
(a) For items	01 to 12 -	AutoCAD/Creo Pare	am <mark>etric etc.</mark>	
(b) For items	13 to 18 -	ANSYS, NASTRAN e	etc.	
(c) For item	19 -	CNC Machine Tool.		
(d) For item 2	- 0	3D Printer.	A	
Course Outcome:				
After successful completion of the course, the student will be:				
i. Familiar in 3D Modelling with at least one CAD Package.				
ii. Familiar with FEA of simple structures/ components.				
111. Far	niliar with modern ma	nutacturing methods	like CNC Machining	g/ 3D Printing.
Text Book(s):				
1. P.I. Va	rghese; Machine Drav	wing; V.I.P Publisher	S.	
2. S. Ramamrutham, R. Narayanan; Strength of Materials; Dhanpat Rai Publishing Co.				

Course cod	e Course Name:	L-T-P-Credits	Year of		
			Introduction		
SB361	APPLIED THERMODYNAMICS	3-0-0-3	2016		
Prerequisite	e: Nil				
Course Obj	ectives:				
•	Γο impart knowledge on the fundamental concepts a	nd laws of thermo	dynamics.		
•	To introduce the various thermodynamic processes &	k cycles.			
•	To impart knowledge on the properties of pure subst.	ances.	a and internal		
•	combustion engines	i nozzies, turbine	es and internal		
Syllabus [.]	combustion engines.	CAL			
Introduction	· Fundamentals: Zeroth I aw of Thermodynamics: I	deal Gas Equation	• First I aw of		
Thermodyna	mics: Internal Energy: Thermodynamic Processes	· Work Done and	d Heat Added		
Second Law	y of Thermodynamics: Clausius Inequality: Entro	, work Done and	Irreversibility		
Third Law	of Thermodynamics: Gas Power Cycles: Thern	nal Efficiency: N	Aean Effective		
Pressure: Pr	operties of Pure Substances: Liquid Vapour Mixt	ures: Uses of Ste	am Table and		
Mollier Dia	gram: Steam Nozzles: Steam Turbines: Interna	l Combustion E	ngines- Types		
Principle of	Operation: Knocking: Detonation.		-8		
Expected O	utcome:				
Upon succes	sful completion of the course, the student will be ab	le to:			
i. L	Demonstrate understanding of the laws governing the	rmodynamic proc	esses.		
ii. D	Demonstrate understanding of the various types of	f thermodynamic	processes and		
с	vcles.		I		
iii. D	Demonstrate understanding of the concept of entropy	and appreciate its	significance.		
iv. D	Demonstrate understanding of the concepts of available	oility and irreversil	bility.		
v. D	Demonstrate understanding of the various gas power	er cycles and pro	perties of pure		
S	ubstances.	, 1			
vi. D	Demonstrate understanding of the principle and ope	ration of steam no	ozzles, turbines		
a	nd internal combustion engines.				
Text Books					
1. Holn	nan, J.P.; Thermodynamics; McGraw Hill Internation	nal Student Edition	n.		
2. P.K.	Nag; Engineering Thermodynamics, Tata McGraw 1	Hill.			
Data Book	(Approved for use in the examination):	1			
1. C.P I	Kothandaraman; Steam Tables with Mollier Diagram	n; New Age Intern	ational		
Publishers.					
2. R. S. Khurmi; Steam Tables with Mollier Diagram; S. Chand Publications.					
5. 5. Domkundwar, Steam Fables with Momer Diagram, Dhanpat Kar & Sons.					
Reference Books:					
1. Mathur and Mehta; Thermodynamics and Heat Power Engineering; Jain Brothers.					
2. P.L.	Ballaney; Thermal Engineering, Vol.I; Khanna Pub	lishers.			
3. Yun	us A. Cengal, Michael A. Boles; Thermodynamics	- An Engineering	g Approach (SI		
Unit	s), McGraw Hill				

Course Plan				
Module	Content	Hours	Sem. Exam Marks	
Ι	Fundamentals & Zeroth Law: Introduction; Basic Definitions (System, Control Volume, Work, Heat Property, Process etc.); Zeroth law of Thermodynamics; Ideal Gas Equation of State. First Law: Closed System Undergoing a Cycle; Closed System Undergoing a Change of State; Internal Energy of a System; Expansion Work; Ideal Gas Processes- Isobaric, Isochoric, Isothermal, Adiabatic and Polytropic; Work Done and Heat Added in Different Process; First Law Applied to One Dimensional Steady Flow Process; Flow Energy, Steady Flow Energy Equation.	M J J	15%	
П	Second Law: Various Statements and their Equivalence; Reversible Process and Reversible Cycles; Carnot Cycle; Corollaries of the Second Law; Thermodynamic Temperature Scales; Clausius Inequality; Concept of Entropy, Calculation of Change in Entropy in Various Thermodynamic Processes – Reversibility and Irreversibility; Available and Unavailable Energy; Third law of Thermodynamics.	9	15%	
	FIRST INT <mark>E</mark> RNAL EXAM			
III	Gas Power Cycles: Carnot Cycle, Brayton Cycle, Ericcson Cycle, Sterling Cycle etc.; Air Standard Cycles, Otto Diesel, Dual and Joule Cycle; Evaluation of Thermal Efficiency and Mean Effective Pressure.	6	15%	
IV	Properties of Pure Substances: p-V, p-T, T-S Diagram for a Pure Substance, Critical Point and Triple Point, Saturation States; Liquid Vapour Mixtures, Dry, Wet and Superheated Steam; Use of Steam Table and Mollier Diagram; Rankine Cycle for Wet, Dry and Superheated Steam.	6	15%	
	SECOND INTERNAL EXAM		-	
V	Steam Nozzles: Mass Flow Rate, Throat Pressure for Maximum Discharge, Throat Area, Effect of Friction, Super Saturated Flow. Steam Turbines: Velocity Triangles, Work Done, Governing and their efficiencies.	6	20%	
VI	Internal Combustion Engines: Classification of I.C. Engines; Principle of Operation of Spark Ignition and Compression Ignition Engines. Two Stroke and Four Stroke; Stages of Combustion in S.I. and C.I Engines, Knocking and Detonation, Factors Controlling Knock and Detonation, Methods of Preventing Knocking and Detonation. END SEMESTER EXAM	6	20%	

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	code	Course Name	L-T-P-Credits	Y	ear of	
				Intr	oduction	
SB36	52	MARITIME LAW	3-0-0-3		2016	
Prerequi	isite : N	Vil				
Course	Objec	tives:				
• T	o imp	part basic knowledge and understar	nding on Maritime La	w & N	Iaritime	
CO	ontract	S				
	o impa	art knowledge on Regulations on Mari	ne Safety & Pollution.			
Syllabus	s:				T 1	
Introduc	tion to	Maritime Law, Bills of Lading Cont	racts, Hague-Visby Rule	s, The F	lamburg	
Rules,	The R	otterdam Rules, Charter Party Con	tracts, Hybrid Charter	Parties,	Marine	
Insuranc	e Law	r, Payment and Finance for Internation	al Trade, Bills of exchan	ge, Ship	Building	
Contracts	s, Ship	o Repair Contracts, Ship Sale & Pu	urchase Contracts, Intern	ational	Maritime	
Organisa	tion, Fo	our Pillars of Maritime Regulations – MA	RPOL, SOLAS, STCW, M	ILC.		
Expecte	d Out	come:				
Upon su	ccessf	ul completion of the course, the stude	nt will:			
i.	Hav	e knowledge on International Maritim	e Law & various Maritin	ne Cont	racts.	
ii.	Und	erstand the Regulations on Marine Sat	fety & Pollution from Sh	ips.		
iii.	Acq	uire knowledge on Various Maritime	Rules & Regulations.			
Text Bo	oks:					
1. C	hristop	her Hill; Maritime Law; Lloyd's Practical	Shipping Guides.			
2. G	huidan	ce for the Ship Operators on Port Sta	ate Control; The ILO M	Iaritime	Labour	
C	Conven	tion, 2006.				
3. S	OLAS	consolidated edition, 2014 by IMO.				
4. Y	vonne	Baatz: Maritime Law.				
Referen	ce Bo	oks:				
1. C	apt. M	V.Naik & Capt. C. L.Dubey; Maritime	Legislation & Ship Board	Manage	ment for	
D	eck Of	ficers.	0	0		
2. IN	MO ST	CCW Convention and STCW Codes.				
3. M	IARPO	DL consolidated edition, 2011 by IMC).			
4. T	homas	J. Schoenbaum; Admiralty and Maritime	Law (Hornbook Series Stu	dent Edi	tion).	
		Course Plan				
					Sem.	
Module		Content		Hours	Exam	
litouuio		2014		110015	Marks	
	Intro	duction to Maritime Law: Bills o	f Lading: Electronic			
_	Bills	of Lading. Bills of Lading Issued u	nder Charter Parties	_		
I	The	Hague and Hague-Visby Rules: Appli	cation of the Hague-	6	15%	
	Visby Rules: The Hamburg Rules: The Rotterdam Rules					
	Char	ter Party Contracts: Choosing the	Type of Charter and			
	Facto	rs to be Considered; Obligations	between Owner and			
	Chart	erer regarding Voyage and Time Cha	rter Parties; Risk and			
II	Cost	Allocation Between Owner and Cl	narterer; Commercial	7	15%	
	Contr	col of the Vessel; Exception Claus	ses / Limitations of			
	Liabi	lity / International Conventions; The	e Problem of Delay			
	Unde	r Time and Voyage Charters; Hybrid C	Charter Parties.			

	FIRST INTERNAL EXAM			
III	Marine Insurance Law: The Nature of the Marine Insurance Contract; Capacity to Contract, Good Faith Duties of the Parties and Insurable Interests; The Marine Insurance Act 1906; Types of Policies and Insured Perils; Coverage for General Average and Salvage; Protection & Indemnity Insurance.	8	15%	
IV	Payment and Finance for International Trade: Bills of Exchange; Collection Arrangements and the Uniform Rules 1995; Letters of Credit; Counter Trade; Bank Guarantees and Performance Bonds; Other Forms of Mercantile Finance.	6	15%	
1	SECOND INTERNAL EXAM			
	Shipbuilding Contract: Method of Payment; Title and Security; Plans and Specifications; Warranties and Limitation of Liability; Completion Dates, Insurance, Taxes.	3		
V	Ship Repair Contract: Processes Involved in Ship Repair; Contract and Financing Repairs; Cancellations, Variations, Delays, Warranties; Losses and Damage; Insurance and Regulatory Issues; Protecting Rights; Managing Risk, Liability and Disputes.	4	20%	
VI	Ship Sale & Purchase Contracts: Introduction to Sale and Purchase, Parties, Roles and Contract Forms; The Ship Broker and Formation of the Contract in Sale and Purchase; The Memorandum of Agreement; Performance Guarantees; Default, Remedies and Arbitration.	4	2007	
	The Four Pillars of Maritime Regulations International Maritime Organisation and its Mandate; Overview of ILO and its Specificities; Origins and Content of the Four Pillars - SOLAS, MARPOL, STCW, MLC.	4	20%	

Maximum Marks : 100

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Exam Duration: 3 hours

Course code	Course Name:	L-T-P-Credits	Year of Introduction
SB363	MARINE POLLUTION, CONTROL AND	3-0-0-3	2016
~~~~~	<b>RECOVERY SYSTEMS</b>		
Prerequisite	: Nil		
Course Ob	jectives:		
1. To unde	erstand different sources of pollution from ship	os and floating s	tructures.
2. To prov	ide basic knowledge on Marine Pollution, its	impact & contro	1.
3. To fam	liarise various rules and regulations concerning	g environmenta	l protection.
4. To know	w various marine pollution recovery strategies	and systems em	ployed.
Syllabus:	TECHNOLOG	ICAL	
Introduction	to Marine Pollution, Types & Sources of Pollution	r; International Co	onventions and
Standards, P	revention of Pollution by Oil, IMO Regulations	on Oil Pollution,	Prevention of
Pollution fro	m Sewage, Garbage and Noxious Liquid Substan	ces in Bulk, Regu	lations for the
Control of H	armful Substances Carried by Sea in Packaged For	rm, Marine Paints	and Pollution,
Dismantling	of Maritime Structures and Ships, Consequences o	f Marine Pollutio	n, Legal Issues
in Marine Po	llution, Introduction to Marine Oil pollution Recov	very Systems.	
Expected C	Outcome:		
Upon succe	ssful completion of the course, the students wi	ill be:	
i. Fan	niliar with different sources of marine pollution	on, their impact	on the marine
envi	ronment and methods to control them.		
ii. Able	e to appreciate role of various internation	nal and region	al rules and
regu	lations for marine environmental protection in	design of ships	
iii. Able	e to apply various strategies and methods for	marine pollutio	n recovery to
min	mise impact of pollution.		
Text Books		1005	
1. E.C	old; Handbook of Marine Pollution, Gard, No	rway, 1985.	wford Science
2. K.D. Publ	ications 1997	(4ui Edition); C	vitoru Science
3. Rich	ard A Geyer: Marine Environment Pollution,	Elsevier.	
Reference	Books:		
1. Basel	Convention on the Control of Trans boundary Mo	vements of Hazar	dous Wastes
and the	neir Disposal, 8 th October, 2005.		
2. Guid	elines on the Application of Provisions of the Inter	national Convent	ion, MARPOL
73-78	; Russian Maritime Register, 2015.		
3. Jean	Marie Massin; Marine Pollution, Vol. 6; Plenum P	ress.	
4. Ober	E.F; Internal Combustion Engines & Air pollut	ion, Hopper & R	ow Pub., New
York			

	Course Plan				
Module	Content	Hours	Sem. Exam Marks		
Ι	<b>Introduction:</b> Definition of Marine Pollution, Types of Marine Pollution, Various Sources of Marine Pollution.	3	15%		
	Concerns and Consequences of Marine Pollution, Global Warming, Sea Level Changes, Carbon Emissivity and Green Shipping Biodiversity.	2			
	Marine Pollution in the Coastal Zone.	1			
	<b>International Conventions and Standards:</b> IMO, MARPOL, MEPC, SOLAS, UNCLOS, London Convention.	4			
II	Documentation and Certificates Onboard Ships and Other Floating Production Systems, HNS (Hazardous and Noxious Substances).	2	15%		
	The International Maritime Dangerous Goods (IMDG) Code.	2			
	FIRST INT <mark>ER</mark> NAL EXAM				
	<b>Prevention of Air pollution from Ships:</b> Emissions from Ships Engines, Fuel Oil Quality, IMO Marine Engine Regulations, Requirements for Survey and Issuance of International Air Pollution Prevention Certificate (IAPP).	3			
III	Ozone Depleting Substances, Volatile Organic Compounds	2	15%		
	Methods to Reduce Air Pollution from Ships, Emission Control Areas, Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), Special Areas.	4			
IV	<b>Prevention of Pollution by Oil:</b> IMO Regulations on Oil Pollution, Segregated Ballast Tanks, Oily Water Separator, Oil Tanker Safety and Pollution Prevention, Escort Tugs for Tankers.	3			
	<b>Prevention of Pollution from Sewage, Garbage and Noxious</b> <b>Liquid Substances in Bulk:</b> Definition of Sewage, Garbage, Ship's Equipment and Systems for the Control of Sewage Discharge, Requirements for Survey and Issuance of International Sewage Pollution Prevention Certificates (ISPP).	2	15%		
	Categories of Noxious Liquid Substances, Discharge Provisions and Standards.	2			
	SECOND INTERNAL EXAMINATION	·	·		
<b>N</b> 7	Regulations for the Control of Harmful Substances Carried by Sea in Packaged Form.	2	0004		
V	Causes of Pollution from Ballast Water, Ballast Water Management (BWM) Convention; Bilge Water /Waste Oil	2	20%		

	Management.			
	Dismantling of Maritime Structures and Ships; Occupational	2		
	Health and Hazards.	Z		
	Marine Paints and Pollution: VOC Content, Anti Fouling	1		
VI	Paints.	1		
	Legal Issues in Marine Pollution: Insurance and	r		
	Compensation.	2	20%	
	Introduction to Marine Oil Pollution Recovery Systems:	A		
	Types of Recovery Systems, Skimming Systems, Oil Storage	3		
	System, Treatment of Pollutant After Recovery.			
END SEMESTER EXAM				

## PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

-510

2014

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course co	ode Course Name	L-T-P-Credits	Ye	ar of duction
SB364	INTRODUCTION TO SUBSEA PIPELINES	3-0-0-3	2	016
Prerequis	site : Nil			
Course	Objectives:			
• To	o introduce the domain of subsea pipelines and risers.			
• To	familiarize the codes governing the design of subsea	pipelines and ris	sers.	
• To	give an overview of flow assurance with regard to su	bsea pipelines.		
• To	give an overview of subsea pipeline installation,	inspection and	main	tenance
m	ethods.	LAC		
Syllabus		AL		
Introduct	ion to Subsea Pipelines- Classification- Pipeline Des	ign Analysis- D	esign S	Stages-
Mechani	cal Design of Subsea Pipelines- Design Codes- Flow	Assurance- Sing	gle Pha	ase and
Multipha	se Flows- Riser Configurations-Pipeline Install	ation- Pipeline	e Insp	ection,
Maintena	ance & Repair.			
Expected	d Outcome:			
Upon suc	ccessful completion of the course, the students will:			
i.	Be able to demonstrate an understanding of the	difference betw	een tra	ansport
	pipelines, flow lines, water injection lines and variou	s types of risers	•	
ii.	Be able to exhibit awareness of the codes and s	tandards used i	n the	subsea
	pipeline industry and solve simple problems.			
iii.	Be able to demonstrate basic knowledge of the flow	assurance proce	ss.	
iv.	Be able to demonstrate an understanding of the diff	erent riser confi	guratic	ons and
	different types of risers.			
V.	Be able to explain the different methods of subsea pi	pe laying operat	ion.	
vi.	Be able to demonstrate basic understanding	of the various	s insp	ection,
	maintenance and repair activities carried out on subs	ea pipelines.		
Torrt Do	Tetal			
	JKS:	ing DonnWall C	~ <b>~~</b>	
1. Al 2 V	and Rei Oiang Rei Subsea Dinalines and Risera Elsevier	ing, Feiniwen Co	лр	
2. <b>Y</b>	ong Bai, Qiang Bai, Subsea Pipelines and Risers; Elsevier.			
Doforon	Pa Baaks:			
	P. Sparks: Fundamentals of Marine Riser Mechanics: Penn	Well Corn		
1. C. 2 St	brata K Chakrabarti: Handbook of Offshore Engineering V	ol-II [.] Elsevier		
Course P				
	1411.			Sem
Module	Content	1	Hours	Fyam
wiouule	Content		liouis	Lam Morks
	Introduction to Subsea Pinelines · Classification	- Transport		1 <b>1141 N</b> 3
	Pipelines Flow Lines Water Injection Lines Risers, Da	sign Stages &		
т	Processes: Pineline Design Analysis_ Pineline Stress	Checks Snan	4	15%
L	Analysis Onbottom Stability Analysis Fynancion Analysis	is Installation	т	10/0
	Analysis, Chottom Statinty Marysis, Expansion Analysis	is, motanation		
	1 1111 y 515.			

II Sele II Lor Col Vib	ection; Material Grade Optimization; Pressure Containment Design; ngitudinal Load Design; Equivalent Stress Criterion; Hydrostatic llapse; Buckle Arrestors; Onbottom Stability; Vortex Induced prations.	10	15%
	FIRST INTERNAL EXAMINATION		
III Ass Flo	w Assurance: Introduction; Challenges & Concerns; Typical Flow surance Process; Fluid Characterization and Flow Property sessments; Hydrocarbon Flows- Single phase Flows, Multiphase ws, Slugging, Pigging.	7	15%
IV <b>Ris</b> Ris Ris Dri	sers: Description of the Riser System; Riser Configurations; ser System Components; Types- Catenary Risers, Top Tensioned sers, Steel Catenary Risers for Deepwater, Flexible Risers, illing and Workover Risers; Riser Analysis Tools; Codes.	6	15%
SECOND INTERNAL EXAMINATION			
V Pip V Sub Ves Bur	beline Installation: S Lay; J Lay; Reel Lay; Pipelay Semi comersibles; Piplelay Ships & Barges; Pipelay Reel Ships; Tow or Pull ssels; Route Optimization; Pipeline Tie-in; Pipeline Trenching/ rying; Rock Dumping.	8	20%
VI VI VI Los Met	beline Inspection, Maintenance & Repair: Operating Philosophies; beline Security; Operational Pigging; Pipeline Shut Down; Pipeline pressurization; Inspection by Intelligent Pigging-Metal Loss pection Techniques, Intelligent Pigging for Purposes other than Metal as Detection; Pipeline Repair Methods- Conventional Repair thods, General Maintenance Repair; Deepwater Pipeline Repair.	7	20%

Maximum Marks : 100

Exam Duration: 3 hours

#### PART A

- Answer all 8 questions of 3 marks each.
- Answer an 8 questions of 5 marks each.
  1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name	L-T-P-	Y	ear of
code		<u>Credits</u>	Intr	oduction
SB305 Dropoo	HYDRAULIC MACHINERY	3-0-0-3		2016
Course O	viectives:			
	jecuves.	lic machinery		
• To	introduce the different types of hydraulic numps	and turbines	their	working
apr	lications and accessories.		, then	working,
• To	introduce miscellaneous hydraulic systems commonly	used in the indus	strv.	
Syllabus:	ALLADUULINA	LAIVI	, <u>, , , , , , , , , , , , , , , , , , </u>	
Dynamic .	Action of Fluid-Impulse Momentum Equation- Flow	w of Incompress	sible F	luid Over
Fixed and	Moving Vanes- Reaction Principle- Energy Trans	sfer in Rotodyn	amic 1	Machines-
Impulse a	nd Reaction Turbines- Velocity Triangles- Theory	of Draft Tub	es- Sel	ection of
Turbines-	Centrifugal Pumps- Operating Characteristics of C	entrifugal Pump	s- Rec	iprocating
Pumps- R	otary Type Positive Displacement Pumps- Miscella	neous Pumps-	Hydrau	lic Press-
Hydraulic	Accumulator- Cavitation.			
T				
Expected	Outcome:	a to:		
1 Demo	essiul completion of the course, the student will be able as the student will be able	e 10. aulic machinery	onerati	าท
2 Demo	nstrate knowledge pertaining to the operation and p	erformance of d	ifferent	types of
hvdrau	ilic turbines and pumps.		meren	cypes of
3. Demo	nstrate general awareness of common hydraulic ma	chinery like pre	sses, li	fts, rams,
cranes	etc.	5 1	,	, ,
4. Appre	ciate the causes & effects of cavitation and the susce	eptibility of hydi	aulic s	ystems to
this pl	enomenon.			
Text Book	s:			
1.	Jagadishlal; Hydraulic Machines; Metropolitan Publis	hers.		
2.	Dr. R.K Bansal; Fluid Mechanics & Hydraulic Machin	nes; Laxmi Publi	cations	•
<u> </u>	Lewitt E. H; Hydraulics & Fluid Mechanics; Pitman.			
Reference	BOOKS: Abdulla Shariff: Hydraulia Machinas: Standard Public	borg		
1.	Govinda Rao N. S: Eluid Elow Machines: Tata McGra	aw Hill		
2.	John H. Pinninger, Tyler Gregory Hicks: Industrial Hy	vdraulics: Grego	Divisio	m
5.	McGraw Hill.	, diudiles, diegg	DIVISIC	/11
4.	Modi & Seth; Hydraulic Machines; Laxmi Publication	18.		
5.	R.K.Rajput; Hydraulic Machines; S.Chand & Compar	ny.		
6.	Som S. K. and Biswas G.; Introduction to Fluid Mech	anics and Fluid N	Aachine	es; Tata
	McGraw Hill.			
7.	Stepanoff John A. J.; Centrifugal and Axial Flow Pum	nps; Wiley & Sor	ıs.	
8.	Yahya S. M.; Turbines, Fans and Compressors; Tata M	AcGraw Hill.		
	Course Plan	I		a
Module	Content	I	Iours	Sem. Exam
				Marks
	Dynamic Action of Fluid: Impulse Momentum	m Equation,		
I	Applications- impact of jet; Flow of an Incompressib	le Fluid Over	7	15%
	Fixed and Moving vanes – Work Done and Efficient	cy; Reaction		20/0
	Principle, Propulsion of Ships; Basic Equation of End	ergy Transfer		

	in Rotodynamic Machines, Components of Energy Transfer; Classification- Axial Flow, Radial Flow, Impulse and Reaction		
	Machines.		
Π	<b>Hydraulic Turbines:</b> Classification– Impulse and Reaction Turbines; Euler's Turbine Equation, Velocity Triangles; Pelton Wheel, Francis Turbine Kaplan Turbine – Construction Features and Performance Characteristics; Theory of Draft Tube; Speed Regulation of Turbines, Run Away Speed; Selection, Type and Speed of Turbines.	6	15%
	FIRST INTERNAL EXAM		
III	<b>Rotodynamic Pumps:</b> General Classification; Rotodynamic Pumps, Construction Features, Classification Of Impellers, Impeller Shapes, Types of Casings; Working of Centrifugal Pumps, Priming, Euler's head equation – Velocity Triangles, Losses, Head and Efficiencies; Pump Performance Characteristics- Main Operating Characteristics Curve, Selection of Pumps from Performance Curves – NPSH Required, NPSH Available; Multistage Pumps; Pumps in Parallel & Series Operation; Propeller Pumps.	7	15%
IV	<b>Positive Displacement Pumps:</b> Reciprocating Pump; Effect of Vapour Pressure on Lifting of Liquid; Indicator Diagram; Acceleration Head, Effect of Friction; Use of Air Vessels, Work Saved, Slip Efficiency; Pump Characteristics – Applications.	6	15%
	SECOND INTERNAL EXAM		
V	<b>Other Types of Pumps:</b> Theory & Application of Self Priming Pump; Jet Pump; Airlift or Compressor Pump; Slurry Pump; Positive Displacement Rotary Pumps- Gear, Screw, Vane Pumps.	8	20%
VI	<b>Fluid Systems</b> (Theory Only): Introduction; Hydraulic Press; Hydraulic Accumulator; Hydraulic Intensifier; Hydraulic Ram; Hydraulic Lift; Hydraulic Crane; Hydraulic Coupling; Hydraulic Torque Converter; Air Lift Pump; Gear Wheel Pump.	6	20%
	<b>Cavitation:</b> Precaution and Effects; Hydraulic Machines Subjected to Cavitation.	2	
	END SEMESTER EXAM		

#### END SEMESTER EXAM

#### **QUESTION PAPER PATTERN**

Maximum Marks: 100

PART A

- Answer all 8 questions of 3 marks each. •
- 1 question each from modules I to IV and 2 questions each from modules V & VI. •

#### PART B

- Answer any 2 full questions out of 3 for each module. •
- Each question from module I to IV carries 6 marks. •
- Each question from module V & VI carries 7 marks. •
- Each full question can have maximum of 4 sub questions, if needed. •

2014

Exam Duration: 3 hours

Course	e Course Name	L-T-P-Credits	Ye	ar of
code			Intro	duction
SB366	EXPERIMENTAL TECHNIQUES ON SHIPS & MODELS	3-0-0-3	20	016
Prereaui	site : Nil			
Course	Objectives:			
• 7	Fo introduce the various experimental tests carried out on	ships and models.		
•	Fo provide knowledge and fundamentals of ship powering	g through experimen	tal tech	niques.
•	Fo introduce Sea keeping and Manoeuvring tests.	LAIVI		
Syllabus	TECLINIOLOOL	CAL		
Introduct	ion to Experimental Techniques on Ships and Models, P	rediction of Ship Re	esistance	e, Open
Water T	ests, Cavitation, Self Propulsion Experiments, Sea	Trials, Seakeeping	Exper	riments,
Manoeuv	ring Experiment, Paint Erosion Tests, Smoke Disposal Te	ests, Rudder Tests, T	fuft Tes	ts.
Expecte	d Outcome:			
Upon su	ccessful completion of the course, the student will b	e able to:		
i.	Predict resistance of a ship and estimate effective p	ower through mod	el testir	ng in a
	towing tank.			
ii.	Determine performance of a ships propeller and result	ing hull propeller in	teractio	n using
	model experiments.	n narfarmanaa of nr	onallan	
iv	Analyse the results to predict delivered power and p	ropeller revolution	opener. rate at a	a given
1.	speed of the ship and determine Wake Fraction. Thru	st Deduction Factor	r. and F	Relative
	Rotative Efficiency.		,	
v.	To analyse performance of ships by using varie	ous Seakeeping te	sts and	d other
	manoeuvring devices.			
Vi.	Understand objectives of various sea trials.			
1 ext Bo	OKS:	100	-	
	C. Tupper; Introduction to Naval Architecture, Butterwor	tn-Heinemann, 1996	) _	
2. S.	C. Misra; Design Principles of Ships and Marine Structu	res, CRC Press, 201	5	
Keieren	CM Weter Destinal Ship Design Election Compared			
	Give Watson; Practical Ship Design; Elsevier Ocean Englishing Design & Construction: Volume Land II (2002, 2004	The Society of N	aval Am	abitanta
<b>2.</b> SI	np Design & Construction, Volume 1 and 11 (2003, 2004	), The Society of N	aval Al	cintects
	a Mallandi The Maritime Engineering Deference	Pook: A Guida to	Shin	Docian
5. 10 C	onstruction and Operation: Butterworth Heinemann	book: A Guide to	Smp	Design,
	onstruction and Operation, Butterworth-Hememann.			
	Course Plan			
				Sem.
Module	Content	H	ours	Exam
				Marks
	Introduction To Experimental Techniques, Predic	tion of Ship		
	Resistance, Resistance Tests, Total Resistance, Resist	tance Curves,		
Ι	Resistance Coefficients, Ship Models, Laws of Cor	nparisons and	7	15%
	Similarity, Extension of Model Results to Ships, 7	Fowing Tank,		
	Instrumentation and Method of Measurements.			

II	<b>Open Water Tests:</b> Objectives, Facilities, Test Set Up, Principles, Procedure, Analysis and Conclusions	7	15%	
	rioceuure, Anarysis and Conclusions.			
	FIRST INTERNAL EXAM			
	Cavitation Tests - Cause of Cavitation, Cavitation Number,			
III	Classification of Cavitation, Law of Similarities, Cavitation Tests,	7	15%	
	Prevention of Cavitation.			
IV	Self Propulsion Experiments - Objectives, Instruments and	7	1504	
	Equipment, Test Arrangements, Basic Principles, Experiment, Results.	/	1370	
	SECOND INTERNAL EXAM			
	Sea trials, Shop Tests.			
17	Maneuvering Trials, Dock Trials, Speed Trials, Observations, Data	7	2004	
v	Presentation and Uses.	/	20%	
	Shallow Water Resistance Tests.			
VI	Wake Measurements, Sea Keeping Tests.	4		
	Paint Erosion Tests, Smoke Disposal Tests, Rudder Tests, Tuft	2	20%	
	Tests.	3		
	END SEMESTED FY AM			

Maximum Marks : 100

Exam Duration: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

#### PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

014

Estd.

Cours	e Course Name:	L-T-P- Credita	Year of	
SB367	7 INLAND WATER TRANSPORTATION	3-0-0-3		
Prerequ	isite: Nil	5-0-0-5	2010	
Course	Objectives:			
•	To study the scope and prospects of inland water tran	sportation in a c	country's trade.	
•	To familiarize with design and operation of vess	sels being used	through inland	
	waterways.	ATAA	4	
•	To assess the scope of inland waterways for na	vigation and tr	ansportation in	
	Indian scenario.	TOA		
Syllabu	s: F()()	A		
Characte	ristics of Inland Water Transport, Classification of I	nland Waterway	vs, Classification	
of Inlan	d Vessels, Intermodal Transportation, Rules and R	Regulations for I	Design of Inland	
Vessels,	Hull Forms for Inland Vessels, Stability of Inland Ve	essels, Resistanc	e and Propulsion	
of Inlan	d Vessels, General Arrangement, Mooring and	Anchoring, St	ructural Design,	
Materials	s of Construction, Production Techniques.			
Expecte	ed Outcome:			
Upon su	iccessful completion of the course, the students v	will be able to:		
i.	Classify different type of inland vessels including	ng special type	s and river sea	
	vessels.			
ii.	Familiar with the basic principles governing design	and operation of	f inland vessels.	
iii.	Design an inland vessel for the given mission requir	rements.		
iv.	Inspect the compliance of a given design with	statutory rules	s by regulatory	
	authorities.			
Text Bo	ooks:			
1. K	Cerala Inland Vessel Rules, 2010; Directorate of	Ports, Govt. of	Kerala.	
2. R	Recommendations on Harmonized Europe- Wide	e Technical Re	quirements for	
	nland Navigation Vessels, Resolution No. 61	, Economic C	ommission for	
	urope, Inland Transport Committee, United Nati	ions, 2011.	1. 100	
3. K	tules and Regulations for the construction of I	nland Waterwa	iys ships; IRS,	
	January 1997.			
Referen		T 1 1 NT '	· • • • • • • • • • • • • • • • • • • •	
1. C	nrista sys, Therry vaneislander: Future Challenges fo	or inland Naviga	ition, University	
	ress Antwerp.		McCrowy Hill	
2. C	bilizations	cruising sallor	s, McGraw Hill	
	ublications.	Cov. of India		
	and vessels Act 1917, Ministry of Law and Justice,	tion of Techni	cal and Safety	
4. N	equirements of Inland Navigation Economic C	ammission for	Europe Inland	
Т	ransport Committee United Nations 2013	Jillinssion for	Europe, iniana	
	afety Code for Passenger Shins Operating Solely	in UK Cate	oorised Waters	
	Aerchant Shipping Notice MSN 1823 (M) The M	aritime & Coas	touard Agency	
	J.K., 2010.			

Course Plan				
Module	Content		Sem. Exam Marks	
	Introduction.			
Ι	Inland Waterways and their Peculiarities.	2		
	Characteristics of Inland Water Transport.	2	15%	
	Inland Water Transport in India, Classification of Inland Waterways.	2		
	Classification of Inland Vessels.			
П	KIV Rules, Special Type Vessels, River-Sea Vessels, Dumb Barges, Flotilla/ Pusher Tugs.	3	15%	
	Intermodal transportation – with Sea, Road and Rail; Low Draught and Low Wash, Self-Propelled Vessels.	3		
	FIRST INTERNAL EXAMINATION			
	Preliminary Design.			
III	Dimensional Restrictions of Waterways, Bridges, Bends, Locks and Gates.	3	15%	
	Design using Empirical Relations – Weight Estimation	3		
	Hull Shapes of Inland Vessels.			
	Chine Hull Forms, Development of Hull Forms, Round Bilge, Multihull, Stability of Inland Vessels, Heel test.	2	15%	
IV	Resistance and Propulsion of Inland Vessels; Special Features – Tunnels, Shrouded Propeller.	2		
	Shallow Water Effect - Determination of Shallow Water Resistance.	2		
SECOND INTERNAL EXAMINATION				
-	General Arrangement.	1		
V	Cargo Handling & Equipment on Board Systems – Piping Systems, Fire Fighting Appliances, Life Saving Appliances.	4	20%	
	Super Structure Arrangements, Mooring and Anchoring.	2		
	Rules and Regulations of Inland Vessels – I.V Acts.	3		
	Structural Design. 2014			
1/I	Rules of Construction.	3	20%	
V I	Materials of Construction, Standards.	3		
	Methods of Construction and Production Technologies.	3		
END SEMESTER EXAMINATION				

Maximum Marks: 100

Exam Duration: 3 hours

## PART A

- Answer all 8 questions of 3 marks each. •
- 1 question each from modules I to IV and 2 questions each from modules V & VI. •

- Answer any 2 full questions out of 3 for each module. •
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks. •
- Each full question can have maximum of 4 sub questions, if needed. •



Course	Course Name	L-T-P-Credits	Year of
code			Introduction
SB368	SUBMARINES & SUBMERSIBLES	3-0-0-3	2016
Prerequisite	: Nil		
Course Obj	jectives:		
• To i	mpart knowledge on basic design concepts of submers	ibles.	
• To	impart knowledge on stability, hydrodynamics	and structural a	rrangements of
subr	nersibles.	AAA	
• To f	amiliarise the student with basic design considerations	and application of	f AUV & ROV.
Syllabus:	TECHNOLOGI	$\Delta$	
Introduction	to Submarines and Submersibles, Submarine Des	sign Management	and Methods;
Classification	n of Submarines, Generation of Concept Design, Co	ncept Sizing, The	e Weight/ Space
Relationship,	Geometric Form and Arrangements, Submarine Hydr	ostatics; Powering	g of Submarines,
Dynamics ar	nd Control of Submarines; Submarine Structures, F	ailure Modes, St	tructural Design
Philosophy, S	Submarine Systems, Autonomous Underwater Vehicle	es & Remotely Op	berated Vehicles,
Powering and	1 Navigation.		
Expected O	Putcome:	11 /	
Upon succes	ssful completion of the course, the students will be	e able to:	
1. C.	assiry submarines and their main features.	ada dasian nhasa	and conception
11. U	technical proposal and concept design meth	ods, design phases	s and generation
	derstand weight assessment and provide control	maating taabnis	al proposal of
su	bmarines.	meeting technic	a proposal of
iv. D	emonstrate knowledge on concep <mark>ts</mark> of hydrodynamics of	of submarines.	
v. U	nderstand and demonstrate knowl <mark>e</mark> dge on structural de	sign consideration	s of submarines
ar	nd various failure modes.		
vi. In	terpret and apply basic design concepts of AUV & R	OV, and demons	trate knowledge
or	n its power source & navigation.		
<b>Text Books</b>	ESTO,		
1. Y.N.	Kormilitsin, O.A. Khalizev; Theory of Submarine	<mark>Design,</mark> Riviera M	Maritime Media
(Augi	ıst 1, 2001)		
2. Drew	Nelson; Submarines and Submersibles, Gareth Steven	<mark>s P</mark> ublishing (Janu	ary 1, 2013)
3. Kate Hayden; Submarines and Submersibles, DK Readers, 2016			
Reference Books:			
1. Roy I 1995	Burcher, Louis J. Rydill; Concepts in Submarine Des	sign, , Cambridge	University Press ,
2. Antho	ony J. Watts; A Source Book of Submarines and Subm	ersibles, Ward Lo	ck, 1976
3. James	B. Sweeney; A Pictorial History of Oceanographic Su	ubmersibles, Crow	n Pub, 1970
4. James P. Delgado, Clive Cussler; Silent Killers: Submarines and Underwater Warfare. Osprev			
Publis	shing; 2011		· 1 J
5. Harry	Bohm and Vickie Jensen; Build Your Own Program	nable Lego Subm	ersible: Project:
Sea A	ngel AUV (Autonomous Underwater Vehicle), WEST	COAST WORDS	(2002)
			·

6. Lance J. Watkins; Self-Propelled Semi- Submersibles: The Next Great Threat to Regional

Security and Stability, Master's Thesis, Naval Post Graduate school, Monterey, California, 2011

- 7. Robert F. Burgess; Those Magnificent Men in their Diving Machines, A History of Subs and Submersibles (Illustrated), Spyglass Publications, 2012
- 8. William A. Nash; Hydrostatically Loaded Structures: The Structural Mechanics, Analysis and Design of Powered Submersibles, Elsevier, 1995
- 9. E. Eugene Allmendinger; Submersible Vehicle Systems Design, SNAME, 1990.

<b>Course Pla</b>	n:	
-------------------	----	--

Module	Content	Hours	Sem. Exam
	Introduction to Submarines and Submersibles: Definition of		Marks
	Submarines and Submersibles, Features of Submersibles, Operating	3	
	Environment and Requirements.		
Ι	Classification of Submarines: Early Submarines, Development of		15%
	Submarines, Modern Era, Submarine Weapons and Antisubmarine	4	
	Weapons.	•	
	Submarine Design Management and Methods: Design Phases,		
	Development of Technical Proposal and Submarine Design		
	Specifications, Sequence of Building a Submarine, Costing, Design		
П	Influence on Cost and Building.		
	<b>Design Methods:</b> Convergence Methods, Drawing or Graphic	7	15%
	Method, Analytical Method, Computer Application in Submarine		
	Design.		
	Generation of concept design: Concept sizing, Concept sizing with		
	AlP systems, Other sizing's, iterations in design.		
	FIRST INTERNAL EXAM		
	Weight/ Space Relationship: Purpose, Significance of Density,	2	
	Weight Assessment and Control, Space, Margin Policy and Budgeting,	2	
	Space Margin Policy, Other Size Deciding Factors.		
	Geometric Form and Arrangements: Introduction, Factors	2	
ш	Hull Internal Arrangements	Z	150/
111	Submarine Hydrostatics: First Principles of Electricity Submarines		1370
	on Surface Arrangements of Main Ballast Tanks Buoyancy Elements		
	Weight Elements Trim and Compensating Tanks, Special Tanks	3	
	Stability	5	
	Stability.		
	Powering of Submarines: Introduction, Powering Requirements	1	
IV	Resistance to motion, Speed-power relationship, Surface resistance	2	1504
	<b>Propulsion:</b> Design Aspects of Propulsion Plants, Design Aspects of Powering	2	1 J 70
	roweinig		

	Dynamics and Control: Concepts, Equations of Motion of a		
	Submarine, Stability and Control in the Horizontal Plane, Stability and		
	Control in the Vertical Plane, Steering and Depth Control Systems,	3	
	Contributions of Hull Form and Appendages to Control Dynamics,		
	Emergency Recovery.		
	SECOND INTERNAL EXAM		
V	Submarine Structures- Introduction, Operational Requirements for		
	Depth, Pressure Vessel Shape, Shell-Elastic Deformations, Buckling	3	
	Deformations; Other Failure Modes.		
	Internal supporting structure, Pressure hull penetrations, Fabrication		20%
	considerations, Fatigue, Choice of materials, structural design	2	
	philosophy.	3	
	UNIVERSITI		
	Submarine Systems: Requirements, Hydraulic Systems, High		
	Pressure Air Systems, Water Systems, Systems for Hydrostatic	2	
	Control, Environmental Control Systems, Provision for Escape,	3	
	Various Electrical Systems.		
VI	Autonomous Underwater Vehicles & Remotely Operated		20%
	Vehicles: Definition, Difference between AUV & ROV, Types, Basic		
	Design Concepts, Materials Used for Construction, Applications,	4	
	Communication System, Power Source, Navigational System.		
END SEMESTER EXAM			

Estd.

2014

Maximum Marks : 100

Exam Duration: 3 hours

## PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.