Course Code	Course Name	L-T-P- Credits	Year of Introduction		
CE401	DESIGN OF STEEL STRUCTURES	4-0-0-4	2016		
Prerequisite : CE202 Structural Analysis II					
Course objectives:					

- To introduce the limit state design of steel structural components subjected to bending, compression and tensile loads including the connections
- To enable design of structural components using timber

Syllabus:

Steel and steel structures – bolted and welded connections- tension members – compression members – beams – roof trusses – purlins – timber structures – columns- composite beams

Expected Outcomes:

The students will be able to

- i. design bolted and welded connections
- **ii.** design tension members and beams using the IS specifications
- iii. design columns under axial loads using IS specifications
- iv. design beams and plate girders
- v. assess loads on truss and design purlins
- vi. design structural components using timber.

Text Books:

- 1. L S Jayagopal, D Tensing., Design of steel structures, S Chand & Company, 2015
- 2. S K Duggal., Limit State design of steel structures, Tata McGraw Hill, 2010
- 3. Subramanian N, Design of steel Structures, Oxford University Press, 2011

References :

- 1. P. Dayaratnam., Design of Steel Structures, Wheeler Publishing, 2003
- 2. Punmia B. C., Jain A. K. and Jain A. K., Design of Steel Structures, Laxmi Publications (P) Ltd, 2017
- 3. Raghupathi, Steel Structures, Tata McGraw Hill, 2006
- 4. Ramchandra S and Virendra Gehlot, Design of Steel Structures Vol. II, Standard Book House, 2007
- 5. V L Shah & Veena Gore, Limit State Design of steel Structures, Structures Publications, 2009
- 6. William T Segui., Steel Design, Cenage Learning, 6e, 2017
- 7. IS 800 2007, Code of practice for Structural steel design, BIS

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
I	Introduction to steel and steel structures, properties of steel, structural steel sections. Introduction to design: Design loads and load combinations, limit state design concepts. Connections bolted and welded (direct loads)	9	15		

II	Tension members-Types of sections – net area- design of tension members- concept of shear lag-use of lug angle-connections in tension members	9	15
	FIRST INTERNAL EXAMINATION		
III	Compression members- design of struts- solid and built up columns for axial loads design of lacings and battens-column bases- slab base – gusseted base	10	15
IV	Design of beams- laterally restrained and unrestrained – simple and compound beams- plate girders subjected to uniformly distributed loads – design of stiffeners.	9	15
	SECOND INTERNAL EXAMINATION		
V	Design of roof trusses- types-design loads and load combinations- assessment of wind loads- design of purlins. Moment resistant/Eccentric connections (in plane and out of plane)	10	20
VI	Design of timber structures: types of timber - classification - allowable stresses-design of beams-flexure, shear, bearing and deflection considerations-Design of columns. Design of composite beam sections with timber and steel.	9	20
	END SEMESTER EXAMINATION		

Estd.

Maximum Marks : 100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1. Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
CE403	STRUCTURL ANALYSIS - III	3-0-0-3	2	016
Prerequ	isite :CE303 Structural Analysis - II			
Course	objectives:		_	
•	To enable the students to have a comprehensive idea of m emphasis on the relative advantages of the flexibility metho To enable the students to visualize structural dynamics pro structural analysis and vibration theory	atrix stru od and the blems wi	ctural ana stiffness th a prope	alysis with method er blend of
Syllabu		911	here's	
Approxi Flexibili	mate Methods of Analysis of Multistoried Frames, Ma ty method, Stiffness method, Introduction to direct stiffness m	trix anal trinethod, St	ysis of ructural d	structures, ynamics
Expecte	d Outcomes:			
The stuc	ents will be able to			
	1. analyse structures using approximate method	ng flevibil	ity metho	d
	iii analyse trusses, continuous beams and rigid frames by	stiffness r	nethod	ju
	iv. conceive Finite element procedures by direct stiffness r	nethod		
	v. use the basics of structural dynamics and analyse the re	sponse of	SDOF sy	stems
Text Bo	oks :			
1. G S	Pandit and S P Gupta, Structural analysis a Matrix approach, N	McGraw I	Hill Educa	ation
(Ind	a), 2e, 2008			
2. Gere	, J.M. and William Weaver, Matrix Analysis of framed structu	ures, CBS	Publishe	rs, 1990
3. Ken	heth M Leet, Chia Ming Uang, Anne M Gilbert, Fundamentals	s of struct	ural analy	vsis, Tata
McC	raw Hill Pvt Ltd., 4e, 2010		012	
4. Red	iy C.S., Basic structural analysis, Tata McGraw Hill, third edi	tion, <i>3e</i> , <i>2</i>	2012	
1 Anil	K Chopra Dynamics of structures Pearson Education/Pren	tice Hall]	India 5e	2016
2. Clou	gh R.W. and Penzein, J., Dynamics of structures, Tata McGra	w Hill, 19	995	2010
3. Mad	hujith Mukhopadhyay and Abdul Hamid Sheikh, Matrix and H	Finite Eler	nent Ana	lysis of
Structures, Ane Books India, 2009				
4. Mario Paz, Structural Dynamics: Theory & Computation, 2e, CBS Publishers, 2004				
5. Raja	sekharan. S. and Sankarasubramanian G., Computational struc	ctural Me	chanics, P	PHI, 2009
o. wan	g C.K., Matrix method of structural analysis, international Te	XI DOOK CO	ompany, 1	1970
	COURSE PLAN			C
Modu le	Contents		Hours	Sem. Exam Marks %
	Approximate Methods of Analysis of Multistoried Frames: A	nalysis		
_	for vertical loads-substitute frames-loading condition for ma	iximum	_	
I	hogging and sagging moments in beams and maximum b	bending	6	15
	moment in columns- wind load analysis of multistoried fr	ames –		
	Portar method and cantile ver method for fateral load allarysis.			

II	Matrix analysis of structures: static and kinematic indeterminacy- force and displacement method of analysis-definition of flexibility and stiffness influence coefficients Concepts of physical approach	6	15
	FIRST INTERNAL EXAMINATION		
III	Flexibility method: flexibility matrices for truss and frame elements-load transformation matrix-development of total flexibility matrix of the structure-analysis of simple structures-plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15
IV	Stiffness method: Development of stiffness matrices by physical approach-stiffness matrices for truss and frame elements- displacement transformation matrix-analysis of simple structures- plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15
	SECOND INTERNAL EXAMINATION		
V	Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co- ordinates from element co-ordinates- assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.	8	20
VI	Structural dynamics-introduction-degrees of freedom-single degree of freedom subjected to harmonic load -linear systems- equation of motion, D'Alembert's principle-damping- free response of damped and undamped systems- logarithmic decrement- transient and steady state responses, Dynamic magnification factor – Vibration isolation –Concept of two degree of freedom systems (No derivation and numerical problems)	8	20
	END SEMESTER EXAMINATION		

Estd

11/1

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE405	ENVIRONMENTAL ENGINEERING- I	3-0-0-3	2016

Pre-requisites: CE203 Fluid Mechanics -I

Course objectives:`

- To study the significance of water resources and the factors affecting the quality and quantity of water
- To study the various types of treatment techniques adopted for a public water supply system

Syllabus :

Water sources, demand, factors, Quantity estimation, Population forecasting, Quality of water. Water treatment- Physical methods, Chemical methods. Design of sedimentation tank, flocculator, clariflocculator, filters, Membrane treatment techniques. Disinfection- methods. Distribution of water, Pumps, Hardy Cross method of analysis

Expected Outcomes:

The students will

- i. become aware of the various pollutants affecting water quality
- ii. know about the different treatment units available in a water treatment plant and their design procedures

Text Books:

- 1. B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., 2016
- 2. G S Birdie, Water Supply and Engineering, Dhanapat Rai Publishing Company, 2014
- 3. P.N. Modi, "Water Supply Engineering", Standard Book House, NewDelhi
- 4. Peavy H S, Rowe, D.R. Tchobanaglous "Environmental Engineering" Mc GrawHill Education, 1984
- 5. S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010

References

- 1. K N Dugal, Elements of Environmental Engineering, S Chand and Company Pvt Ltd, 2007
- 2. Mackenzie L Davis, Introduction to Environmental Engineering, McGrawhill Education (India), 2012
- 3. Metcalf & Eddy, "Waste Water Engineering", Tata Mc Grawhill Publishing Co Ltd, 2003
- 4. P Venugopala Rao, Environmental Engineering, PHI Learning Pvt Ltd, 2002
- 5. Subhash Verma, Varinder Kanwar, Siby John, Water supply Engineering, Vikash Publishing, 2015

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Introduction of environment- sources of water supply-Water demand, quantification of water demand through population forecasting – Factors affecting consumption-Fluctuations in demand	7	15	

II	Types of intakes-Conveyors, pumps and location of pumping station- Quality of water - Drinking water standards - Physical, chemical and biological analysis.	6	15
	FIRST INTERNAL EXAMINATION		
III	Treatment of water-Theory and principles of Sedimentation tanks- Stoke's law-Types of settling (Type I & Type II only)-Coagulation- Mixing-Flocculation, Design of Sedimentation tanks (circular and rectangular)-Clariflocculators	7	15
IV	Filtration-Types of filters- Working and Design of Rapid and Slow sand filters. Loss of head in filters, Pressure filters	7	15
	SECOND INTERNAL EXAMINATION		
V	Disinfection of water - Methods, Chlorination-Types, Factors affecting - Chlorine demands. Miscellaneous treatment-Ion exchange, Lime-soda process, Electro dialysis - Colour, Taste and Odour removal-Adsorption-Aeration-Fluoridation-Defluoridation	7	20
VI	Lay out of water distribution network-Methods of distribution-Hardy cross method-Equivalent pipe method-Pipe appurtenances.	8	20
END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each ista. Note :

- 1. Each part should have at least one question from each module
- 2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

CE407TRANSPORTATION ENGINEERING - II3-0-0-32016	Course Code	Course Name	L-T-P- Credits	Year of Introduction
	CE407	TRANSPORTATION ENGINEERING - II	3-0-0-3	2016

Prerequisite : CE308 Transportation Engg.-I

Course Objectives:

- To set a solid and firm foundation in Railway engineering, including the history development, modern trends, maintenance, geometric design and safety of railways.
- To introduce dock, harbour and tunneling

Syllabus :

Introduction to railways in India and its evolution, modern technologies, geometric design of tracks, railway operation control, maintenance and an introduction to the railway accidents. Alignment, surveying, driving, ventilation and drainage of tunnels and types of harbours and docks.

Course Outcome:

• This course will enable students to gain knowledge in railway and water transportation.

Text Books:

- 1. Mundrey J. S, Railway Track Engineering, Tata McGraw Hill, 2009
- 2. Rangawala, S.C., Railway Engineering, Charotor Publishing House
- 3. Rao G. V, Principles of Transportation and Highway Engineering, Tata McGrawHill, 1996
- **4.** Srinivasan, R., Harbour, Dock & Tunnel Engineering, Charotor Publishing House, 28e, 2016

References:

- 1. Bindra, S.P., A course in Docks and Harbour Engineering, Dhanpat Rai& Sons
- 2. Chandra, S. and Agarwal, M.M. ,Railway Engineering, Oxford University Press, New Delhi, 2008
- 3. Saxena, S. C and Arora, S. P, Railway Engineering, Dhanpat Rai& Sons, 7e, 2010
- 4. Subhash C. Saxena, Railway Engineering, Dhanpat Rai& Sons

Module	Contents	Hours	Sem. Exam Marks %
I	Introduction to Railways in India: Role of Indian Railways in National Development – Railways for Urban Transportation – Modern developments- LRT & MRTS, tube railways, high speed tracks. Alignment- basic requirements and factors affecting selection, Component parts of a railway track - requirements and functions - Typical cross-section	7	15
II	Permanent Way : Components and their Functions: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps and kinks . Sleepers – Functions, Materials, Density, Ballast less Tracks. Geometric design of railway track: Horizontal curves, radius – super	7	15

	elevation -cant deficiency - transition curves - gradients - different types - Compensation of gradients.		
	FIRST INTERNAL EXAMINATION		
III	Railway operation and control: Points and Crossings – Design features of a turnout – Details of station yards and marshalling yards – Signaling, interlocking of signals and points - Principles of track circuiting - Control systems of train movements – ATC, CTC – track circuiting	6	15
IV	Maintenance:- Introduction to track maintenance, Items of track maintenance, packing and over hauling, screening Railway accidents: Human and system contribution to catastrophic accidents, Human Factors in Transport Safety.	6	15
SECOND INTERNAL EXAMINATION			
V	Tunnel Engineering: Tunnel - sections - classification - tunnel surveying -alignment, transferring centre, grade into tunnel – tunnel driving procedure - shield method of tunneling, compressed air method, tunnel boring machine, Tunnel lining, ventilation - lighting and drainage of tunnels.	8	20
VI	 Harbours- classification, features, requirements, winds and waves in the location and design of harbours. Break waters - necessity and functions, classification, alignment, design principles, forces acting on break water - construction, general study of quays, piers, wharves, jetties, transit sheds and warehouses - navigational aids - light houses, signals - types - Moorings Docks - Functions and types - dry docks, wet docks - form and arrangement of basins and docks 	8	20
	END SEMESTER EXAMINATION		

Maximum Marks :100

Exam Duration: 3 Hrs

- Estd.
- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module
 - 2 Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE409	QUANTITY SURVEYING AND VALUATION	3-0-0-3	2016

Pre-requisites: CE334 Computer Aided Civil Engg. Lab

Course objectives:

- To have an awareness regarding specifications, analysis of rates, valuation etc. in connection with construction
- To prepare detailed estimates, bar bending schedules of various items of work

Syllabus :

Specifications- Analysis of rates- CPWD data book and schedule of rates- Detailed specification, preparation of data and analysis of rates for various items of work- Quantity Surveying- Types of Estimate - Valuation- Methods of valuation-Depreciation- Fixation of rent- Detailed estimate including quantities, abstract and preparation of various items of works, Preparation of bar bending schedules for various RCC works

Expected Outcomes:

The students will be able to

- i. work out the quantities of materials and labour required for different types of civil works
- ii. prepare schedule of rates for various items of work

Text Books

- 1. B N Dutta, Estimating and costing in Civil Engineering, USB publishers and distributers Ltd. New Delhi
- 2. D D Kohli, RC Kohli, A textbook of Estimating and costing, S Chand Publishing, 2011
- **3.** Dr. S. Seetharaman, M. Chinnasamy, Estimation and Quantity Surveying, Anuradha Publications, Chennai.

References:

- 1. BS Patil, Civil Engineering contracts and estimates, Universities press
- 2. V N Vazirani & S P Chandola, Civil engineering Estimating and Costing, Khanna Publishers.
- 3. IS 1200-1968; Methods of measurement of Building & Civil Engineering works.
- 4. CPWD data book and schedule of rates.

Note:

For analysis of rate and cost estimation, unit rate and labour requirement should be given along with the questions in the question paper. No other charts, tables, codes are permitted in the Examination Hall. If necessary, relevant data shall be given along with the question paper.

COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %		
Ι	General Introduction- Quantity Surveying- Basic principles-Types of Estimates - Specifications- purposes and basic principles-general specifications - Detailed specifications-Method of measurement of various items of work. Analysis of rates- Introduction to the use of CPWD data book and schedule of rates- conveyance and conveyance statement -	6	10		

	Miscellaneous charges.			
п	Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.	6	10	
	FIRST INTERNAL EXAMINATION			
III	Detailed estimate including quantities, abstract and preparation of various items of works- buildings- centerline method and long wall short wall method- sanitary and water supply works- soak pits, septic tanks, overhead tanks, culverts, Retaining walls, road construction. Bar-bending schedule-preparation of bar-bending schedule for RCC works connected with building construction, culverts and minor irrigation works.	18	50	
	SECOND INTERNAL EXAMINATION			
IV	Valuation - Explanation of terms, types of values, sinking fund, years purchase, Depreciation - Straight line method, constant percentage method, S.F method .Obsolescence. Valuation of real properties-rental method, profit based method, depreciation method. Valuation of landed properties -belting method, development method, hypothecated building scheme method. Rent calculation. Lease and Lease hold property	12	30	
	END SEMESTED EXAMINATION			

Maximum Marks: 100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 10 marks each
- Part B Module III : 2 questions out of 3 questions carrying 25 marks each
- Part C Module IV : 2 questions out of 3 questions carrying 15 marks each
- Note: 1. Part A should have at least one question from each module
 - 2. Part B three full questions carrying 25 marks on building estimate, preparation of bending schedule, or estimation of any other structure.
 - 3. Part A and C each question can have a maximum of 2 subdivisions (a, b)

Course Code	Course Name	L-T-P- Credits	Year of Introduction					
CE431	ENVIRONMENTAL ENGINEERING LAB	0-0-3-1	2016					
Prerequisites: C	Prerequisites: CE405 Environmental Engineering - I							
Course objectiv • Te	es: o equip the students in doing analysis of water and	wastewater	· samples					
List of Experim 1. To analyse the sample and t	ents: (Minimu 10 experiments are mandatory) he physical characteristics viz. colour, turbidity, an to determine its suitability for drinking purposes	nd conductiv	vity of a given water					
2. To analyse the assessing its	he chemical characteristics of a given water sampl potability	e viz. pH, ao	cidity, alkalinity for					
3. To analyse the content to as	he chemical characteristics of a given water sampl sess its suitability for drinking purposes and build	e viz. chlori ing construc	des and sulphates tion					
4. To determine	e the Dissolved Oxygen content of a given water s	ample for cl	necking its potability					
5. To determine	e the available chlorine in a sample of bleaching p	owder						
6. To analyse the	he various types of solids in a giv <mark>en</mark> water sample							
7. To determine	e the BOD of a given wastewater sample							
8. To determine	e the COD of a given wastewater sample							
9. To determine	e the optimum dosage of alum using Jar test							
10. To determine	e the Nitrates / Phosphates in a water sample							
11. To determine	e the iron content of a water sample							
12. To determine Expected outcom	e the MPN content in a water sample and assess the e:	e suitability	for potability					
	2014		/mp0303					

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE461	WAVE HYDRODYNAMICS AND CAOSTAL ENGINEERING	3-0-0-3	2016

Pre-requisite : CE206 : Fluid Mechanics II

Course objectives:

- 1. To introduce the fundamentals in ocean wave mechanics and coastal engineering.
- 2. To impart knowledge and comprehension over the basic aspects of wave hydrodynamics.
- 3. To equip the students with the state-of-the-art in coastal zone protection.

Syllabus :

Linear Wave Theory-Derivation for Velocity potential, Wave kinematics, Wave kinetics, Wave Power. Wave propagation in Shallow water region. Wave pressure, Wave forces-Morrison equation, Froude –Krylov force, Linear diffraction theory. Coastal process, Coastal protection works, Environmental parameters.

Expected Outcomes:

• The students will be able to develop skills and knowledge to solve the issues connected with ocean wave interaction with offshore and coastal features.

Text Book :

Dominic Reeve, Andrew Chadwick, Chris Fleming. Coastal Engineering : Processes, Theory and Design Practice, CRC Press, 2015

References:

- 1. Narashimhan, S.and S. Kathiroli(Ed.), Harbour and Coastal Engineering(Indian Scenario), -NIOT Chennai, 2002
- 2. US Army Corps of Engineers, Coastal Engineering Manual, 2002
- 3. US Army Corps of Engineers, Shore Protection Manual, Coastal Engineering Research Centre, Washington, 1984.
- 4. V.Sundar, Ocean wave Mechanics Applications in Marine Structures, Ane Book Pvt Ltd, New Delhi, 2016.
- 5. William Kamphuis ; Introduction to Coastal Engineering and Management, World Scientific, 2002.

Module	Contents	Hours	Sem. Exam Marks %		
Ι	A brief overview on fundamental principles of fluid mechanics (No questions for examination). Characteristics of a regular ocean wave (Wave length, Wave period and wave celerity).Difference between regular and random waves, Linear Wave theory-Assumptions. Boundary Conditions-Kinematic free surface, Dynamic free	7	15		

COURSE PLAN

	 surface. Separable solution of Laplace Equation for velocity potential. Dispersion equation derivation, Dispersion relationship in different water depth conditions (Shallow, intermediate and deep). Worked out exercises. 			
П	Particle velocity and acceleration under wave transport. Particle Displacement. Orbital motion of water particles at different water depth. Derivation for potential energy and kinetic energy. Worked out exercises. Energy flux/Wave power, Derivation for group celerity.	1	7	15
	FIRST INTERNAL EXAMINATION			
III	Wave propagation in shallow water- Wave shoaling –Derivation for shoaling coefficient- Worked out exercises. Wave refraction- analytical expression for refraction coefficient, Combined effect of shoaling and refraction-worked out exercises. Wave diffraction –its significance in harbor planning. Wave reflection-effect of surf similarity parameter. Wave breaking- in shallow water, Breaker types. Wave set up and set down, Wave run up.		6	15
IV	Pressure field under progressive wave, Pressure response factor, Dynamic pressure component. Wave force formulation, force regimes. Wave forces on slender circular members-Morrison Equation. Worked out exercises.		6	15
	SECOND INTERNAL EXAMINATION			
V	Discussion on Wave Forces on large bodies, Froude –Krylov force- general theory. Diffraction theory-Linear diffraction problem- general theory and solution formulation. Wave forces on coastal structures-A brief overview on small amplitude wave theories – only at conceptual level. Wave force by Hirori Formula, Sainflou formula, Nagai Formula. Discussion only on Goda Formula.	7	8	20
VI	Introduction to beach and Coastal process-terms describing beach profile. Coastal erosion process-Natural and man made factors. Shallow water effects in coastal erosion. Long shore sediment transport and its effects on coastal process (only discussion). Near shore currents, cross shore sediment transport. Coastal protection (Only discussion, design is not expected)-important factors to be considered. Coastal protection methods-shore parallel and shore perpendicular structures, beach nourishment, Environmental parameters considered in design.		8	20
	END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

Course C	ode	Course Name	L-T-P- Credits	- Y s Intr	ear of oduction
CE463	3	BRIDGE ENGINEERING	3-0-0-3	;	2016
Prerequis	site: (CE 301 Design of Concrete structures I			
Course ol	bjecti		AK	A	
• To) impa	art knowledge on important types of bridge structures,	their sele	ction and	planning,
str	ructura	al configurations, assessment of loads and perform desig	gn.	1	
Syllabus : General co bridges an bridge fou	: onside nd box indatio	erations for road bridges, Standard specifications for roa culverts, T beam bridges, Prestressed concrete bridges ons	d bridges, substruct	, Design o ures, bear	of slab rings,
Course O	outcor	nes:			
The stude	nts wi	ill be able to			
1. US	se IRC	standards and design the deck slab			
11. ar	aign a	, design and detail Box culverts for the given loading			
iv de	sign a	nd check the stability of piers and abutments			
v de	sign a	bridge bearings			
vi. de	etail b	ridge foundations and prepare the bar bending schedule			
Text Book	s :				
1. Jag 2. Jol	gadish hnson	n T.R. & M.A. Jayaram, "Design of Bridge Structures", victor D, "Essentials of Bridge Engineering", 7 th Edit 2006	2nd Editio ion, Oxfo	n, 2009. rd, IBH j	oublishing
3. N.	Krish	naRaju "Prestressed Concrete Bridges" CBS Publisher	s 2012	7	
Reference	es:				~ ~ .
1. Kr	rishna 108	Raju N., "Design of Bridges", 4th Edition, Oxford an	nd IBH Pu	ublishing	Co., Ltd.,
2. Po	onnu S	wamy, "Bridge Engineering", 4th Edition, McGraw-Hi	ll Publicat	tion, 2008).
3. Sv	vami S	Saran, "Analysis and Design of sub-structures",2nd Edit	<mark>tion,</mark> Oxfe	ord IBH I	Publishing
со	ltd., 2	2006.	P 11.1		
4. Va	azıran 06	i, Ratvani & Aswani, "Design of Concrete Bridges", 5th	Edition,	Khanna F	ublishers,
20	00.	COURSE PLAN			
					Sem.
Module		Contents		Hours	Exam Marks %
I	Intro class select in B	oduction :Definition and Basic Forms, Component or sification of bridge, short history of bridge developm ction-Soil Exploration for site Importance of Hydrauli ridge Design. General arrangement drawing.	f bridge, ent, Site c factors	6	15

п	Standard specification for Road bridges : Width of carriageway- Clearances- Loads to be considered- Dead load – I.R.C. standard live loads- Impact effect – Wind load –Longitudinal forces- Centrifugal forces- Horizontal forces due to water currents – Buoyancy effect- Earth pressure.	6	15		
	FIRST INTERNAL EXAMINATION				
ш	 Solid slab bridges : Introduction, General design features, Effective width method. Simply supported and cantilever Slab Bridge, analysis and design. Box Culverts : Introduction to analysis, design and detailing, Loading conditions (detailed design not expected) 	7	15		
IV	Beam and slab bridges: Introduction, Design of interior panel of slab. Pigeaud's method, Calculation of longitudinal moment Courbon's theory, Design of longitudinal girder, design example. and Reinforcement detailing	7	15		
SECOND INTERNAL EXAMINATION					
V	Introduction to pre-stressed concrete bridges (Design Concepts only) Determination of SMinimum Section Modulus, Prestressing Force and eccentricity (Derivation not required) Substructures : Analysis and Design of Abutments and pier- detailing.	8	20		
VI	Bridge bearings: forces on bearings, design of elastomeric bearings, basics for selection of bearings. Types of foundations, well foundation–open well foundation, components of well foundation, pile foundations (designs not included) - detailing only	8	20		
	END SEMESTER EXAMINATION				

ESTO. QUESTION PAPER PATTERN (External Evaluation)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE465	GEO-ENVIRONMENTAL ENGINEERING	3-0-0-3	2016

Pre-requisite: CE 305 Geotechnical Engineering- II

Course objectives:

- To create a awareness in the field of Geo-Environmental Engineering
- To impart the knowledge on Geotechnical aspects in the disposal of waste materials and the remediation of contaminated sites
- To familiarise design of landfill and know the effect of change in environment on soil properties.

Syllabus :

Introduction and Soil-water-environment interaction, Geotechnical applications of waste materials, Geotechnical characterization of waste and disposal, Site characterization, Landfill Components its functions and design, Compacted clay liner, selection of soil, methodology of construction, Geosynthetics in landfill- types and functions, geosynthetic clay liners - Leachate and Gas Management, Soil remediation, Investigation of contaminated soil, insitu/exiture mediations, bio remediation, thermal remediation, pump and treat method, phyto remediation and electro kinetic remediation, Leachate disposal and Post closure of landfill, Variation in properties of soil due to change in environment

Expected Outcomes:

The students will be able to:

- i. Deal with geoenvironmental engineering problems
- ii. Utilize waste in Geotechnical applications
- iii. Design Landfill
- iv. Mange leachate and landfill gas
- v. Do investigation on contaminated site and soil remediation
- vi. Assess variation in engineering properties of soil due to change in environment

Text Books / References

- 1. Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal. Chapman, and Hall, London.
- 2. Koerner, R.M. (2005). Designing with Geosynthetics. Fifth Edition. Prentice Hall, New Jersey.
- 3. Reddi L.N and Inyang HI (2000) Geoenvironmental Engineering: Principles and Applications, Marcel Dekker Inc Publication
- 4. R. N. Yong (2000) Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, Mitigation Lewis Publication.
- 5. Dr. G V Rao and Dr. R S Sasidhar (2009) Solid waste Management and Engineered Landfills, Saimaster Geoenvironmental Services Pvt. Ltd. Publication.
- 6. Ayyar TSR (2000) Soil engineering in relation to environment, LBS centre for Science and Technology, Trivandrum.
- Hari D. Sharma, Krishna R. Reddy (2004) Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies, Publisher: John Wiley & Sons Inc.
- 8. Donald L. Wise, Debra J. Trantolo, Hilary I. Inyang, Edward J. Cichon (2000) Remediation Engineering of Contaminated Soils, Publisher: Marcel Dekker Inc.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Introduction and Soil-water-environment interaction : Introduction to geoenvironmental Engineering, Soil-water-environment interaction relating to geotechnical problems, Waste:-source, classification and management of waste, Physical, chemical and geotechnical characterization of municipal solid waste, Impact of waste dump and its remediation	6	15	
п	Geotechnical application of waste and disposal: Geotechnical use of different types such as Thermal power plant waste, MSW, mine waste, industrial waste. Waste disposal facilities, Parameters controlling the selection of site for sanitary and industrial landfill. Site characterization. MoEF guidelines.	7	15	
	FIRST INTERNAL EXAMINATION			
Ш	Landfill Components :Landfill layout and capacity, components of landfill and its functions. Types and functions of liner and cover systems, Compacted clay liner, selection of soil for liner, methodology of construction.	6	15	
IV	Leachate, Gas Management and Geosynthetics: Management of Leachate and gas. Various components of leachate collection and removal system and its design., gas disposal/utilization. Closure and post closure monitoring system Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design aspects.	6	15	
	SECOND INTERNAL EXAMINATION			
V	Soil remediation : Investigation of contaminated soil, sampling, assessment Transport of contaminants in saturated soil. Remediation of contaminated soil- in-situ / exit remediation, bio remediation, thermal remediation, pump and treat method, phyto remediation and electro-kinetic remediation	9	20	
VI	Change in engineering properties due to change in environment. Variation in Engineering properties of soil –atterberg limit, shear strength, permeability and swelling due to change in environment/pore fluid.	8	20	
	END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module
2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Y Intr	ear of coduction
CE467	HIGHWAY PAVEMENT DESIGN	3-0-0-3		2016
Pre-requis	te : CE208 Geo Technical Engineering - I			
Course O To To des To	jectives : introduce highway pavements, design concepts and material p understand and enable students to carry out design of bitum ign flexible and rigid highway pavements introduce the concepts of pavement evaluation and rehabilitat	properties inous mi ion.	, xes, ar	nalyse and
Syllabus :				
Introduction Analysis of Design of	n to highway pavements – Subgrade soil properties – Desi f flexible pavements- Design of flexible pavements- Anal igid pavements-Pavement evaluation- Introduction to design of	ign of bit lysis of r of pavem	tumino igid p ent ove	ous mixes- avements- erlays.
Course O The studer i. ide ii. and iii. eva	Atcome: ts will be able to ntify the pavement components and design bituminous mixes, lyze and design flexible and rigid pavements luate structural condition of pavement.			
Text Book	s:			
 Yo edi Ya Ya Kh Ha 	 Yoder and Witezak, Principles of Pavement design, John Wiley and sons, second edition,1975. Yang, Design of functional pavements, McGraw- Hill,1972. Khanna S. K. & Justo C. E. G., Highway Engineering, Nemchand & Bros, 9e. Hass & Hudson, 'Pavement Management System', McGraw Hill Book Co, 1978. 			
Reference 1. IR 2. IR 3. IR 4. IR	 References: IRC: 37 - 2001, 'Guidelines for the Design of Flexible Pavements'. IRC: 58 - 2002, 'Guidelines for the Design of Rigid Pavements'. IRC: 37-2012, 'Tentative Guidelines for the Design of Flexible Pavements'. IRC: 58-2011, Guidelines for Design of Plain Jointed Rigid Pavements for Highways. 			
Module	Contents	Н	ours	Sem. Exam Marks %
I	Introduction to highway pavements, Types and component p of pavements, Factors affecting design and performance pavements, Functions and significance of sub grade proper Various methods of assessment of sub grade soil strength pavement design Mix design procedures in mechanical stabilization of s	oarts e of ties, for oils	6	15

	Design of bituminous mixes by Marshall, Hubbard - field and				
	Hveem's methods				
II	Introduction to analysis and design of flexible pavements, Stresses and deflections in homogeneous masses, Burmister's 2 layer and 3 layer theories, Wheel load stresses, ESWL of multiple wheels, Repeated loads and EWL factors	6	15		
	FIRST INTERNAL EXAMINATION				
III	Empirical, semi - empirical and theoretical approaches for flexible pavement design, Group index, CBR, Triaxial, Mcleod and Burmister layered system methods	7	15		
IV	Introduction to analysis and design of rigid pavements, Types of stresses and causes, Factors influencing stresses, General conditions in rigid pavement analysis, Warping stresses, Frictional stresses, Combined stresses	7	15		
	SECOND INTERNAL EXAMINATION				
V	Joints in cement concrete pavements, Joint spacings, Design of slab thickness, Design and detailing of longitudinal, contraction and expansion joints, IRC methods of Design	8	20		
VI	Introduction to pavement evaluation, Structural and functional requirements of flexible and rigid pavements, Quality control tests for highway pavements, Evaluation of pavement structural condition by Benkelman beam, rebound deflection and plate load tests, Introduction to design of pavement overlays and the use of geosynthetics	8	20		
	END SEMESTER EXAMINATION	END SEMESTER EXAMINATION			

Latu,

Maximum Marks :100

Exam Duration: 3 Hrs

2014

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each
- Note: 1.Each part should have at least one question from each module

Course Code	Course Name L-T Cree	·P- lits Int	Year of troduction
CE469	ENVIRONMENTAL IMPACT ASSESSMENT 3-0-)-3	2016
Prerequisi	tes: Nil		
Course ob	jectives:	N 4	
• To	know the various types of environmental pollution	M	
• To	make aware the impact due to various types of pollutants and their	assessment	technique
Syllabus : characteris Noise poll EIA, metho	Pollution, Types. Air pollution-sources, effects, types of pollutics of water pollutants, Solid wastes, sources, types, soil pollutition, Impacts, positive and negative Environmental impact associated of the procedure in India, Case studies.	tants. Wate on, pesticio ssment, ste	er pollution, le pollution. eps of doing
Expected	Dutcomes:		
•	The students will gain basic knowledge of various pollution source	es and their	impacts
Text Books	/ References: Srivastava Environment impact Assessment APH Publishing 20)14	
1. 11 2. Joh	n Glasson Riki Therivel & S Andrew Chadwick "Introductic	n to FIA'	' University
Z. Joh Col	lege London Press Limited, 2011		Onversity
3. Lar	ry W Canter, "Environmental Impact A <mark>s</mark> sessment", McGraw Hill I	nc. , New Y	York, 1995.
4. Min	<mark>iistry</mark> of Environm <mark>ent</mark> & Forests, Govt. <mark>o</mark> f India 2006 EIA Notifica	tion	
5. Rai	G J and Wooten C.D "EIA Analysis Hand Book" Mc Graw Hill		
6. Rol	pert A Corbett "Standard Handbook of <mark>E</mark> nvironmental Engineering	" McGraw	Hill, 1999.
	COURSE PLAN		
			Sem.
Module	Contents	Hours	Exam Marks %
	INTRODUCTION: Classification of Pollution and Pollutants, -		
-	Evolution of EIA (Global and Indian Scenario)- Elements of EIA	-	1.5
I	— Screening – Scoping - Public Consultation - Environmental	6	15
	India) Notification		
	AIR POLLUTION: Primary and Secondary Types of Pollutants,		
п	sulfur dioxide- nitrogen dioxide, carbon monoxide, WATER	6	15
11	POLLUTION: Point and Non-point Source of Pollution, Major	0	15
	Pollutants of Water, Impact of pollutants		
1	FIRST INTERNAL EXAMINATION		
	SOLID WASTE: Classification and sources of Solid Waste,		
III	Characteristics, effects, e waste, : Effects of urbanization on land	1 on land 7 1	
	NOISE POLLUTION: Sources of Noise, Effects of Noise,		

	Control measures		
IV	Impacts of pollutants, types, scale of impact-Global, local pollutants. Climate change, Ozone layer depletion, Deforestation, land degradation, Impact of development on vegetation and wild life	7	15,
	SECOND INTERNAL EXAMINATION		
V	Socio-economic impacts - Impact assessment Methodologies- Overlays, Checklist, Matrices, Fault Tree Analysis, Event Tree Analysis- Role of an Environmental Engineer- Public Participation	8	20
VI	Standards for Water, Air and Noise Quality - Environmental Management Plan- EIA- Case studies of EIA	8	20
END SEMESTER EXAMINATION			

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

2014

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE471	ADVANCED STRUCTURAL DESIGN	3-0-0-3	2016

Prerequisite : CE304 Design of Concrete Structures- II

Course objectives:

- To enable the students to assess the loads on some important types of structures, choose the method of appropriate analysis according to the situation and perform design
- To analyse and design the special structures in steel and understand the new concepts of design

Syllabus :

Design of deep beams, corbels, ribbed slabs, flat slabs, Yield line theory, Design of multi storey buildings, Design of Gantry girder, Design of Industrial structures, beam column connections, Analysis and design of light gauge structures, Tall structures, Shear wall ductility detailing

Course Outcomes:

The students will be able to

- i. design deep beams, corbels. Ribbed slabs
- ii. design and detail a flat slab and multistory buildings
- iii. analyse and design light gauge structures
- iv. calculate the loads on gantry girder and its design
- v. design beam column Connections
- vi. analyse, design and detail multistory building for lateral loads

Text Books / References:

- 1. Krishnaraju.N., Advanced Reinforced Concrete Design, CBS Publishers, 2013
- 2. Mallick S.K. & Gupta A.P., Reinforced Concrete, Oxford & IBH Publishing Co, 6e, 1996.
- 3. Pankaj Agarwal and Manish Shrikandhe, Earthquake Resistant Design of Structures, PHI, 2006
- 4. Punmia B. C., Jain A. K. Comprehensive Design of Steel Structures, Laxmi Publications (P) Ltd, 2017.
- 5. Ramchandra S & Veerendra Gehlot, Design of Steel Structures Vol. II, Standard Book House, 2007
- 6. S.K.Duggal., Design of steel Structures, Tata McGraw-Hill, 2014
- 7. Subramanian N, Design of steel Structures, Oxford University Press, 2015
- 8. Varghese P.C., Advanced Reinforced Concrete Design, PHI, 2005
- 9. William T Segui., Steel Design, Cenage Learning, 6e, 2017
- 10. IS 456 -2000 Code of practice for reinforced concrete design, BIS
- 11. IS 800 2007, Code of practice for Structural steel design, BIS

COURSETLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Design of Deep beams & Corbels. Design of Ribbed Slabs. Yield line theory of slabs – Design of Rectangular and Circular slabs for UDL and point load at centre.	6	15	
II	Design of flat slabs by direct design method and equivalent	6	15	

COUDCE DI AN

	frame method as per IS 456-2000.		
	Design of multi-bay multi storied portal frames for gravity		
	loads, Pattern loading - Use of SP 16 (Substitute Frame method		
	of analysis may be followed).		
	FIRST INTERNAL EXAMINATION		
ш	Design of Light Gauge members - behavior of compression elements- effective width for load and deflection determination- behavior of stiffened and unstiffened elements- moment of resistance of flexural members- design of compression members		15
IV	Design of Gantry Girder :Introduction - Loading consideration & maximum load effect Selection of Gantry girder – Design of gantry girders for primary loads only. Codal provisions	7	15
SECOND INTERNAL EXAMINATION			
V	Design of Industrial structures : Introduction – Classification of Industrial structures- load estimation and steps for Analysis and design. Beam column connections (Unstiffened and stiffened)	8	20
VI	Tall Buildings –Introduction, Structural Systems, Principles of design and detailing of Shear wall. Design of Multistoried framed structures for wind and Earthquake Loads- Equivalent static load method of IS 1893.Ductility detailing for earthquake forces- IS 13920	8	20
END SEMESTER EXAMINATION			

Maxim<mark>um Marks :100</mark>

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE473	ADVANCED COMPUTATIONAL TECHNIQUES AND OPTIMIZATION	3-0-0-3	2016

Prerequisite : CE306 Computer Programming and Computational Techniques

Course objectives:

- To introduce different numerical solutions and importance of optimization
- To impart ability to apply mathematics and optimizing techniques for finding solutions to real time problems.

Syllabus :

Introduction to numerical methods- errors in numerical methods-Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problemspower method. General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems -Formulation of objective function and constraints. Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Nonpolynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton - Cotes open quadrature- Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming. Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions-Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods.

Course Outcomes:

The students will be able to:

- i. Find different numerical solutions of complicated problems
- ii. Determine solutions of real time problems applying numerical methods in mathematics
- iii. Understand the importance of optimization and apply optimization techniques in real time problems

Text Books / References:

- 1. Grewal B.S. "Numerical Methods in Engineering and Science" Khanna Publishers.
- 2. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers" Mc Graw Hill 2006.
- 3. Smith G.D. "Numerical solutions for Differential Equations" Mc Graw Hill
- 4. Ketter and Prawel "Modern Methods for Engineering Computations" Mc Graw Hill
- 5. Rajasekharan S. "Numerical Methods in Science and Engineering"S Chand & company 2003.
- 6. Rajasekharan S. "Numerical Methods for Initial and Boundary value problems," Khanna publishers 1989.
- 7. Terrence .J.Akai "Applied Numerical Methods for Engineers", Wiley publishers 1994.
- 8. R.L. Fox, Optimisation methods in Engineering Design, Addison Wesely
- 9. S.S. Rao, Optimisation Theory and applications, ,Wiley Eastern.
- 10. Belegundu., Optimisation concepts and Applications Engineering,

	COURSE PLAN		
Module	Contents	Hours	Sem. Exam Marks %
I I	Introduction to numerical methods- errors in numerical methods- Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problems- power method.	7	15
II	General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems - Formulation of objective function and constraints.	6	15
	FIRST INTERNAL EXAMINATION		
III	Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Non- polynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton – Cotes open quadrature	7	15
IV	Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming	6	15
	SECOND INTERNAL EXAMINATION		
v	Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions- Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations	7	20
VI	Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods	7	20

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
**341	DESIGN PROJECT	0-1-2-2	2016	
Prerequisite : Nil				

Course Objectives

- To understand the engineering aspects of design with reference to simple products
- To foster innovation in design of products, processes or systems
- To develop design that add value to products and solve technical problems

Course Plan

Study :Take minimum three simple products, processes or techniques in the area of specialisation, study, analyse and present them. The analysis shall be focused on functionality, strength, material, manufacture/construction, quality, reliability, aesthetics, ergonomics, safety, maintenance, handling, sustainability, cost etc. whichever are applicable. Each student in the group has to present individually; choosing different products, processes or techniques.

Design: The project team shall identify an innovative product, process or technology and proceed with detailed design. At the end, the team has to document it properly and present and defend it. The design is expected to concentrate on functionality, design for strength is not expected.

Note : The one hour/week allotted for tutorial shall be used for discussions and presentations. The project team (not exceeding four) can be students from different branches, if the design problem is multidisciplinary.

Expected outcome.

The students will be able to

- i. Think innovatively on the development of components, products, processes or technologies in the engineering field
- ii. Analyse the problem requirements and arrive workable design solutions

Fetal

Reference:

Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages, John Wiley & Sons, Inc

Evaluation

First evaluation (Immediately after first internal examination)20 marksSecond evaluation (Immediately after second internal examination)20 marksFinal evaluation (Last week of the semester)60 marks

Note: All the three evaluations are mandatory for course completion and for awarding the final grade.

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
**352	Comprehensive Examination	0-1-1-2	2016	
Prerequisite : Nil				

Course Objectives

- To assess the comprehensive knowledge gained in basic courses relevant to the branch of study
- To comprehend the questions asked and answer them with confidence.

Assessment

Oral examination – To be conducted by the college (@ three students/hour) covering all the courses up to and including V semester– 50 marks

Written examination - To be conducted by the Dept. on the date announced by the University– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering the six common courses of S1&S2 and six branch specific courses listed – questions are set by the University - no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for discussion, practice and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

Course code	Course Name	L-T-P - Credits	Year of Introduction				
**451	Seminar and Project Preliminarv	0-1-4-2	2016				
	Prerequisite : Nil						
Course Object	tives						
• To deve	elop skills in doing literature survey, techn	ical presentation and rep	port preparation.				
To enab	ble project identification and execution of I	oreliminary works on fin	nal semester				
project		F 1 T 1 1 1					
Course Plan	API ARDI II I	CALAM					
Seminar: Each	student shall identify a topic of current re	elevance in his/her brand	ch of engineering,				
get approval of	f faculty concerned, collect sufficient lite	erature on the topic, stu	dy it thoroughly,				
prepare own re	port and present in the class.	UICAL					
Project prelim	unary:	Former annoine the same (a	at avaading four				
students) The	tudents can do the project individually al	Form project team (n	ot exceeding four				
the project pro	prosal before the assessment board (ex	cluding the external e	upervisor. Fresenic vpert) and get it				
approved by the	e board	cruding the external e	xpert) and get it				
The preliminar	w work to be completed: (1) Literature s	survey (2) Formulation	of objectives (3)				
Formulation of	hypothesis/design/methodology (4) Form	nulation of work plan (5) Seeking funds				
(6) Preparation	of preliminary report	1	ý				
Note: The same	e project should be continued in the eighth	n semester by the same	project team.				
Expected out	come.						
The students w	ill be able to						
i. Analyse	e a current topic of professional interest an	d present it before an au	dience				
ii. Identify	an engineering problem, analyse it and p	ropose a work plan to so	olve it.				
Evaluation	· 50 montrs						
(Distribution)	. 50 marks for the seminar is as follows: i. P	recontation : 10% ii A	bility to onewar				
questions · 30	% $\&$ iii Report : 30%)	resentation . 40% II. A	Unity to answer				
Project prelim	inary · 50 marks (Progress ex	valuation by the supervi	sor \cdot 40% and				
progress evalu	ation by the assessment board excluding e	external expert : 60%. T	wo progress				
evaluations, n	nid semester and end semester, are mandat	ory.)	1 0				
Note: All eval	uations are mandatory for course completion	on and for awarding the	e final grade.				
2014							
2014							

Course code	Course Na	ime	Credits	Year of Introduction			
**492	PROJEC	CT	6	2016			
	Prerequisite : Nil						
Course Object	tives						
• To appl	ly engineering knowledge in r	practical problem s	olving				
To fost	er innovation in design of pro	ducts, processes or	systems				
• To deve	elop creative thinking in findi	ng viable solutions	to engineering pr	oblems			
Course Plan	A A D	KA					
In depth study	of the topic assigned in the l	ight of the prelimi	nary report prepar	red in the seventh			
Review and fir	alization of the approach to the	ne problem relating	to the assigned to	opic			
Preparing a det	ailed action plan for conducti	ng the investigatio	n, including team	work			
Detailed Analy	sis/Modelling/Simulation/De	sign/Problem Solvi	ing/Experiment as	needed			
Final developn	nent of product/process, testin	g, results, conclusi	ons and future dir	ections			
Preparing a pap	per for Conference presentation	on/Publication in Jo	ournals, if possible	2			
Preparing a rep	port in the standard format for	being evaluated by	the dept. assessn	nent board			
Final project p	resentation and viva voce by t	he assessment boar	rd including extern	nal expert			
Expected out	come						
The students w	Think innovatively on the day	lopmont of compone	ante producte proc	assas or			
111.	technologies in the engineering	field	ents, products, proc				
iv.	Apply knowledge gained in so	lving real life engine	ering problems				
		C C					
Evaluation	10						
Maximum M	larks : 100		1				
(1) Two progr	ess assessments	20% by the facu	Ity supervisor(s)				
(11) Final proj	ect report	30% by the asse	ssment board				
(III) Project p	resentation and viva voce	50% by the asse	ssment board				
Note: ΔII the	three evaluations are mandato	ory for course com	letion and for aw	arding the final			
orade	three evaluations are mandate	y for course comp	fiction and for aw	arding the final			
		ista,					
		INTA /					
		014					

Course Code	Course Name	L-T-P- Credits	Year of Introduction		
CE402	ENVIRONMENTAL ENGINEERING – II	3-0-0-3	2016		
Prerequisites: CE405 Environmental Engineering- I					
Course objectives	:				
 To understa 	and the various sources and characteristics of wast	ewater			
• To know th	e various treatment methods available for wastew	ater treatment			
Syllabus : Wastew	vater, sources, characteristics, oxygen demand De	sign of sewers,	Circular sewers,		
Partial flow and fu	Ill flow conditions. Sewer appurtenances, Disposa	al of wastewate	r, Streeter Phelps		
equation, Oxygen	sag curve, Treatment methods, Aerobic and anaer	obic methods, I	Design of various		
treatment units-Sci	reening, Grit chamber, Sedimentation tank, Acti	vated Sludge p	rocess, Trickling		
filter, Rotating bio	logical contactor, Septic tanks, Imhoff tanks, Oxi	dation ditches,	Oxidation ponds,		
Upflow anaerobic	sludge blanket reactors, Sludge digestion, Sludge	drying bed.			
Course Outcomes	:				
The student	ts will				
i. hav	e an understanding of the various types of treatme	int methods for	wastewater		
II. KNO	w the design aspects of various treatment units in	a wastewater tr	eatment plant.		
1 B C Punmi	a "Waste Water Engineering" Laymi Publication	ns Put Itd 201	2		
2 Howard S	Peavy Donald R Rowe George Tchobanoglous	Environmental	Engineering Mc		
Graw Hill I	Education, 1984	Liiviioinnentui	Lingineering, wie		
3. P N Modi.	"Sewage Treatment & Disposal and Waste wat	er Engineering'	. Standard Book		
House, Nev	vDelhi, 2e, 2008.	6 6			
4. S.K. Garg,	"Sewage disposal and Air pollution Engineering"	', Khanna Publi	shers, 2008		
5. G S Birdie,	Water Supply and Engineering, Dhanpat Rai Pub	lishing Compar	ny, 2014		
1.1					
References			-		
1. G. L. Karia learning Pv	, R.A. Christian, Wastewater treatment: Concepts t Ltd, 2013	And Design A	pproach, PHI		
2. J. Arceivala	a, Shyam R. Asolekar, Wastewater Treatment for	Pollution Contr	ol and Reuse,		
McGrawhil	ll Education, 2007				

- 3. K N Duggal, Elements of Environmental Engineering, S Chand Publications, 2007
- 4. Mackenzie L Davis, Introduction to Environmental Engineering, McGraw Hill Education (India), 5e, 2012
- 5. Metcalf and Eddy, "Waste Water Engineering", Tata McGraw Hill publishing Co Ltd, 2003

COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Wastewater- Sources and flow rates, Domestic wastewater, Estimation of quantity of wastewater, Dry weather flow, storm water flow, Time of concentration Sewers, Design of circular sewers under full and partial flow	6	15		

	conditions		
п	Sewer appurtenances-Man holes, Catch basin, flushing devices, Inverted siphon. Ventilation of sewers. Sewage, Sewerage, Systems of sewerage Sewage characteristics- Physical, chemical and biological parameters, Biological oxygen demand, first stage BOD, Chemical oxygen demand, Relative stability, Population equivalent.	7	15
	FIRST INTERNAL EXAMINATION	V. 1.	L
III	Waste water disposal systems- Self purification of streams, Dilution -Oxygen sag curve, Streeter Phelp's Equation, land treatment Treatment of sewage-Preliminary and Primary treatment -Theory and design of Screen, Grit chamber, Detritus chamber, Flow equalization tank and Sedimentation tank.	6	15
IV	Secondary treatment methods-Contact bed, Intermittent sand filter, Theory and design of Trickling filter, Activated sludge process, Trickling filter-High rate, standard. Rotating biological contactor	7	15
	SECOND INTERNAL EXAMINATION	1	
V	Design of Septic tank and Imhoff tank, Principle and working of Oxidation ditch and oxidation ponds. Aerated lagoons, Design of upflow anaerobic sludge blanket reactors	8	20
VI	Sludge treatment and disposal-Methods of thickening, Sludge digestion- Anaerobic digestion, Design of sludge digestion tanks and Sludge drying beds, methods of sludge disposal	8	20
	END SEMESTER EXAMINATION		

• EXTERNAL EVALUATION:

Maximum Marks :100

Exam Duration: 3 Hrs

QUESTION PAPER PATTERN (External Evaluation) :

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

		L-1-I-Creatis	Introduction
CE404 CIV	VIL ENGINEERING PROJECT MANAGEMENT	3-0-0-3	2016

Prerequisite: HS300 Principles of Management

Course objectives:

- To impart knowledge on principles of planning and scheduling projects, with emphasis on construction.
- To understand the uses and suitability of various construction equipment,
- To study the legal and ethical issues related to construction projects
- To become familiar with TQM and similar concepts related to quality
- To impart knowledge in the principles of safe construction practices
- To understand the need of ethical considerations in construction.

Syllabus : Construction Planning and Scheduling, Construction disputes and settlement, Ethics in Construction, Construction safety, Principles of Materials management, Quality management practices, Construction procedures

Expected Outcomes:

The students will be able to:

- i. Plan and schedule a construction project.
- **ii.** Select an appropriate construction equipment for a specific job
- **iii.** Familiarise the legal procedures in construction contracts
- **iv.** Formulate suitable quality management plan for construction
- **v.** Familiarise the safety practices and procedures.
- vi. Apply principles of ethics in decision making.

Text Books:

- 1. Kumar Neeraj Jha, Construction Project Management, Pearson, Dorling Kindersley (India) pvt. Lt
- 2. L.S. Srinath PERT and CPM Principles and Applications, Affiliated East-West Press, 2001
- **3.** Peurifoy and Schexnayder Construction Planning, Equipment, and Methods, Tata McGraw Hill, 2010

Reference Books

- 1. B.C.Punmia & K K Khandelwal, Project Planning with CPM and PERT, Laxmi Publication, New Delhi, 2016
- 2. Charles D Fledderman, Engineering Ethics, Prentice Hall, 2012
- 3. <u>F. Harris</u>, Modern Construction and Ground Engineering Equipment and Methods, Prentice Hall, 1994
- 4. Gahlot and Dhir, Construction Planning and Management, New Age International, 1992
- 5. K KChitkara, Construction Project Management, McGraw Hill Education Pvt Ltd., 2000
- 6. Khanna, O.P., Industrial Engineering and Management., Dhanapat Rai Publications, 1980
- 7. National Building Code, BIS
- 8. P.P. Dharwadkar, Management in Construction Industry, Oxford and IBH
- 9. Shrivastava, Construction Planning and Management, Galgotia Publications, 2000

	COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %			

I	Unique features of construction projects ; Identification of components –Principles of preparing DPR- Construction planning and scheduling - I – Bar charts, Network Techniques, Use of CPM and PERT for planning – Drawing network diagrams – time estimates – slack – critical path-Examples		7	15
п	Crashing and time –cost trade off, Resource smoothing and resources levelling - Construction, equipment, material and labour schedules. Preparation of job layout. Codification of the planning system : Codification approach- Work package and activities identification code – Resource codes – Cost and Finance accounting codes – Technical document codes.	1	7	15
	FIRST INTERNAL EXAMINATION			
III	Construction disputes and settlement : Types of disputes – Modes of settlement of disputes – Arbitration- Arbitrator - Advantages and disadvantages of arbitration – Arbitration Award. Construction cost and budget :Construction cost – Classification of construction cost – Unit rate costing of resources- Budget – Types of budget – Project Master budget.		6	15
IV	Concept of ethics – Professional ethics – ethical problems – provisions of a professional code – Role of professional bodies.Project management information system- Concept – Information system computerization – Acquiring a system – Problems in information system management - Benefits of computerized information system.		7	15
	SECOND INTERNAL EXAMINATION			
V	Concept of materials management – inventory – inventory control – Economic order quantity- ABC analysis. Safety in construction – Safety measures in different stages of construction – implementation of safety programme.		7	20
VI	Construction procedures: different methods of construction – types of contract – Tenders – prequalification procedure - earnest money deposit – contract document – General and important conditions of contract - measurement and measurement book - Inspection and quality control - need, principles and stages. Basics of Total Quality Management	1	8	20
END SEMESTER EXAMINATION				

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P-Cred	its I	Year of ntroduction
CE462	TOWN AND COUNTRY PLANNING	3-0-0-3		2016
Prerequis	ite : Nil			
Course O	bjective:			
• To	expose various levels of planning, the elements in	volved in u	irban a	nd regional
pla	nning and their interrelationships	IAN	VI.	
• To	learn to draw up a town development plan.	IC A	-	
Syllabus	chiestives of planning. Components of planning racio	nol plonning	forhl	alt district
Goals and	objectives of planning; Components of planning - region Theories of urbanization Study of Urban Fou	mai planning	g IOF DIG	bure and its
Character	stics - Spatial standards for various facility areas and u	tilities – zor	$\sin \sigma - \Gamma$	evelopment
of new to	wns - Urban Renewal - Town Development Plan - Tec	chniques of I	Preparat	tion of Base
Maps.			100	
Course O	utcome:			
The stude	nt will be able to			
i. ide	entify and develop the various components of planning	at neighborh	100d, ci	ity, regional
an	d national levels			
ii. fai	niliarize with spatial standards of facilities and p	orepare base	maps	for urban
de	velopment.	1		
Text Boo	KS:			
1. Hu	tchinson B.G., Principles of Transportation Systems Plan	nning, McGr	aw-Hil	l. 1974
2. Kł	adiyali L.R. Traffic Engineering and Transport planning	. Khanna Te	ch Publ	ishers,
19	99			,
3. Op	penheim N., Applied Models in Urban and Regional An	alysis, Prenti	ice-Hall	l, 1980
4. Ra	ngwala, Town planning , Charotar publishing house, 28e	e, 2015.		
Reference	28:			
1. Eis	mer S, Gallion A and Eisner S., The Urban Pattern, Wile	y, 1993.		
2. Hi	raskar G K, Fundamentals of Town planning, Dhanpat R	ai publicatio	ns, 199	3.
3. N.	K Gandhi – Study of Town and Country planning in Ind	dia – Indian	Town a	and Country
pla	Inning Association, 1973.			
4. W	ilson, A.G, Urban and Regional Models in Geography	and Plannin	ig, Johr	Wiley and
So	ns, 1974.			
M	Contents		τ	Sem.
Module	Contents	1	iours	Exam
				Marks %
	Definitions and Rationales of Planning - Definitions	of town		
	and country planning; Goals and objectives of p	olanning;		
T	Components of planning; Benefits of planning - urba	nization,	6	15
1	industrialization and urban development; push and pull	factors;	0	15
	migration trends and impacts on urban and rural develo	opment -		
	rural-urban fringes - city region - area of influe	nce and		
	dominance			
II	Rural landscapes- regional planning: definition, no	eed and	6	15
	importance, function, objective, concept of region,	types of		

	regions, delineation of regions - Types and contents of regional planning for block, district, state, nation, NCR, resource region, agro–climatic region, topographic region and sectoral planning, major regional problems and their solutions.			
	FIRST INTERNAL EXAMINATION			
ш	Theories of urbanization-Concentric Zone Theory; Sector Theory; Multiple Nuclei Theory; Land Use and Land Value Theory of William Alonso; City as an organism: a physical entity, social entity and political entity — Study of Urban Forms such as Garden City, Precincts, Neighbourhoods, - MARS Plan, LeCorbusier Concept, Radburn Concept	M	15	
IV	Urban Structure and its Characteristics - Functions of Transportation Network - concept of accessibility and mobility, Transit Oriented Development (TOD) - Spatial standards for residential, industrial, commercial and recreational areas, space standards for facility areas and utilities, Provisions of Town Planning Act, zoning, subdivision practice, metro region concept.	7	15	
	SECOND INTERNAL EXAMINATION			
V	Concept of New Towns: Meaning, role and functions: Special planning and development considerations, scope and limitations of new town development, Indian experience of planning and development of new towns. Urban Renewal: Meaning, significance, scope and limitations, urban renewal as a part of metropolitan plan	8	20	
VI	Town Development Plan: Scope, contents and preparation. A case study of development plan, scope, content and preparation of zonal development plans, plan implementation - organizational legal and financial aspects, public participation in plan formulation and implementation - Techniques of Preparation of Base Maps: Drawing size, scale, format, orientation, reduction and enlargement of base maps.	8	20	
END SEMESTER EXAMINATION				

Maximum Marks :100

2014

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : $\ 2$ questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE464	REINFORCED SOIL STRUCTURES AND GEO SYNTHETICS	3-0-0-3	2016

Prerequisite : CE305 Geotechnical Engineering - II

Course objectives:

- To understand the history and mechanism of reinforced soil
- To know the various types of geosynthetics, their functions and applications.
- To enable the design of reinforced soil retaining structures.

Syllabus :

Introduction- Functions of geosynthetics. Reinforcement action – Mechanism of reinforced soil. Component materials and their properties – fill, various types of reinforcements with advantages, disadvantages, facings. - Factors affecting the performance and behaviour of reinforced soil.

Design and analysis of reinforced soil retaining walls-General aspects - External stability of vertically faced reinforced soil retaining wall. Internal stability – Tie back wedge analysis or coherent gravity analysis or reinforced soil retaining walls with metallic strip and continuous geosynthetic reinforcements. Assumptions and problems. Construction methods of reinforced retaining walls. Bearing capacity improvement using soil reinforcement – Binquet and Lee's analysis - Simple problems in bearing capacity of reinforced soil foundation. Concept of Geocells, encased stone columns, prefabricated vertical drains, geocomposites, soil nailing, geotubes, geobags (only basic concepts). Natural geotextiles using coir and jute with relative advantages and disadvantages, application areas.

Expected Outcomes:

The students will

- i. Understand the history and mechanism of reinforced soil
- **ii.** Become aware about situations where geosynthetics can be used.
- iii. Know about various types of geosynthetics and their functions
- iv. Be able to do dimple design of reinforced soil retaining walls and reinforced earth beds.

Text Books / References:

- 1. Jones, C.J.F.P. (1985). Earth reinforcement and soil structures. Butterworth, London.
- 2. Koerner, R.M. (1999). Designing with Geosynthetics, Prentice Hall, New Jersey, USA, 4th edition.
- 3. Rao, G.V. (2007). Geosynthetics An Introduction. Sai Master Geoenvironmental Services Pvt. Ltd., Hyderabad
- 4. Rao, G.V., Kumar, S. J. and Raju, G.V.S.S. (Eds.). Earth Reinforcement Design and Construction. Publication No. 314, Central Board of Irrigation and Power, New Delhi, 2012.
- 5. Sivakumar Babu, G.L. (2006). An introduction to Soil reinforcement and geosynthetics. United Press (India) Pvt. Ltd.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Introduction -history –ancient and modern structures- Types of geosynthetics, advantages, disadvantages. Functions of geosynthetics and application areas where these functions are	5	15	

	utilized such as in retaining walls, slopes, embankments, railway			
II	Raw materials used for geosynthetics, manufacturing process of woven and non woven geotextiles, geomembranes, geogrids. Properties of geosynthetics. Creep and long term performance. Reinforced soil - Advantages and disadvantages. Fills, Types of facings, Factors affecting the performance of reinforced soil.	7	15	
	FIRST INTERNAL EXAMINATION			
ш	Mechanism of reinforcement action - Equivalent Confining Stress Concept, Pseudo Cohesion Concept, Concept of Expanding soil mass. – Simple problems.	7	15	
IV	Design and analysis of vertically faced reinforced soil retaining walls- External stability and Internal stability – Tie back wedge analysis and coherent gravity analysis. Assumptions, limitations and numerical problems.	7	15	
	Geosynthetics in payements, function and benefits.			
	SECOND INTERNAL EXAMINATION			
V	Bearing capacity improvement using soil reinforcement – Binquet and Lee's analysis – Assumptions, failure mechanisms. Simple problems in bearing capacity. Geosynthetics for short term stability of embankments on soft soils. Natural geotextiles, Advantages and disadvantages, functions,	9	20	
	erosion control- types of erosion control products, installation methods.			
VI	Prefabricated vertical drains along with design principles and installation method Concept of Geocells, Gabion Walls, encased stone columns, geocomposites, soil nailing, geotubes, geobags (only basic concepts), application in landfills.	7	20	
END SEMESTER EXAMINATION				

Maximum Marks :100

2014

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

Course 2	No. Course Name	L-T-P Credits	Year of Introduction			
CE46	6 FINITE ELEMENT METHODS	3-0-0-3	2	2016		
Prerequi	site : Nil					
Course O	bjectives					
• Te	provide a fundamental knowledge on FEM					
• To	o equip to solve basic Engineering problems using F.	EM				
Syllabus	APLABDUI	KALA	M			
Introducti	on to FEM- Basics of 2D elasticity -Development	of shape functions f	for truss, bea	am and frame		
elements	The Direct Stiffness Method- Lagrangian and Her	mitian interpolation	functions -	Isoparametric		
formulatio		CITY	h. And			
Expected	Outcome	SIT				
• St	udents successfully completing this course are expected	ted to implement FEN	A for solving	g basic		
er	gineering problems.					
Text Bool	۲S					
1. B	athe K J, Finite Element Procedures in Engine 982	eering Analysis, Pre	entice Hall,	New Delhi.,		
2. C	ook R D, Malkus D S, and Plesha M E, Co	ncepts and Applica	tions of Fi	nite Element		
A	nalysis, John Wiley & Sons, Singapore., 1981		v			
3. K	rishnamoorthy C S, Finite Element Analysis- Th	eory and Programn	ning, Tata N	AcGraw Hill,		
N	ew Delhi., 1994					
Reference	Books	n to Finite Floment	in Engine	wing Doorson		
I. C.	lucation. New Delhi., 1998	m io rinite Elements	s in Enginee	ering, realson		
2. H	utton D V, Fundamentals of Finite Element Analy	sis, Tata McGraw H	ill Education	n Private Ltd,		
Ν	ew Delhi., 2005					
3. M	ukhopadhyay M and Abdul Hamid Sheikh, Matrix	and Finite Element A	nalyses of Si	tructures, Ane		
	ooks Pvt. Ltd., New Delni., 2009	na Dasian Wheeler N	Jew Delhi 1	998		
5. R	eddy J N, An Introduction to FEM, McGraw Hill Bo	ok Co. New York, 19	84			
6. Zi	enkiewicz O C and Taylor R W., Finite Element M	Method, Elsevier Butt	erworth-Hei	nemann, UK.,		
20	005		· · · ·			
	Course Plan					
Module	Contents		Hours	Sem. Max. Marks %		
т	Introduction to FEM out line of the pro-	edure Flomont				
	muoduction to PEW- out line of the pro-	forme constitut				
	properties- polynomial form- shape function	form- equilibrium	7	15		
	and compatibility in the solution- converge	nce requirements.				
	Development of shape functions for truss elem	ents				
TT						
	Basics of 2D elasticity - Strain displa	cement relations-				
	constitutive relations- Energy principles-Pri	nciples of virtual	7	15		
	work- Total potential energy- Rayleigh-Ritz r	nethod- method of		-		
	weighted residuals. Gauss elimination - Solution	on of equations				

	FIRST INTERNAL EXAM			
Ш	The Direct Stiffness Method:- Structure stiffness equations – Properties of [K] – Solution of unknowns – Element stiffness equations – Assembly of elements - Static condensation. Displacement boundary conditions – Stress computation – Support reactions	8	15	
IV	Shape functions for C0 and C1 elements – Lagrangian and Hermitian interpolation functions for one dimensional elements Development of shape functions for beam, and frame elements	6	15	
	SECOND INTERNAL EXAM			
V	Lagrangian interpolation functions for two and three dimensional elements constant strain triangle- Linear strain triangle- Bilinear plane rectangular elements- Consistent nodal loads- lumped loads- patch test- stress computation	7	20	
VI	Isoparametric formulation – Line elements- Plane bilinear element- Iso parametric formulation of Quadratic plane elements- Sub parametric elements and super parametric elements- Gauss quadrature- Plate and shell elements	7	20	
	END SEMESTER EXAM			

QUESTION PAPER PATTERN (External Evaluation) :

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits	Y Intro	ear of oduction
CE468	CE468STRUCTURAL DYNAMICS AND EARTHQUAKE RESISTANT DESIGN3-0-0-3			2016
Prerequisi	te : CE403 Structural Analysis III			
Course ob	ectives:		_	
• To 1	nave an understanding on Earthquakes and Design of struc	ctures for ear	rthquake re	esistance
Syllabus :	API ABDUL KA	LAN	X1.	
Introductio Code provi	n to structural dynamics, Multi degree freedom systems, F sions, detailing and codal provisions, Aseismic planning,	Earthquake E Shear walls	Ingineering	g, IS
Expected	Outcomes:		la.	
1. An	ability to Write the equations of motion for damped and	undamped v	ibrations f	or SDOF
syst	ems	1		
2. An	ability to analyse the MDOF systems and calculate the fr	equency & r	node shape	es
3. An	ability to describe engineering seismology including caus	ses and effec	ts of earth	quakes.
4. An	ability to analyze, design multi-storeyed structure using S	eismic Coef	ficient and	
Res	ponse Spectrum methods			
5. An	ability to use the concept of aseismic planning for earthqu	uake resistar	ice.	. 10
6. An	ability to detail the structures as per IS code and design a	nd detail she	ar walls u	sing IS
Toxt Pools	/ Deferences		_	
1 Mai	io Paz "Structural Dynamics - Theory and Computation	s" 6th Edition	n CBS Pu	hlishers
2 Pan	kaiAgarwal& Manish Shrikhande "Farthauake Res	istant Desig	on of St	ructures"
2. 1 an 5thE	dition Prentice Hall of India New Delhi 2009		511 05 511	actares,
3. Jai	Krishna A.R. Chandrasekharan A.R. Brijesh Chand	lra. <i>"Eleme</i>	nts of E	arthauake
Eng	ineering", 2nd Edition, South Asian Publishers, New Delh	i, 2001.	•J	
4. Cho	pra A.K., "Dynamics of Structures", 5th Edition, Pear	son Educati	ion, India	n Branch,
Del	ni, 2007.			
5. S.K	Duggal, "Earth Quake Resistant Design of Structures	", Oxford	university	Press, 1st
6 Clo	igh & Penzien "Dynamics of Structures" A. Edition	n McGraw	Hill Int	ernational
U. Clu Edi	ion 2008		11111, 1110	cillational
IS Codes ·				
IS Codes I	893. IS: 4326 and IS:13920. Bureau of Indian Standards.	New Delhi		
COURSE PLAN				
				End
				Sem.
Module	Contents		Hours	Exam
				Marks
				%
	INTRODUCTION TO STRUCTURAL DYNAMICS :			
	Theory of vibrations – Lumped mass and continuous mas	s systems-		
Ι	Single Degree of Freedom (SDOF) Systems – Form	ulation of	6	15
	equations of motion – Un damped and damped free v	vibration –		

Damped – Force vibrations – Response to harmonic excitation –

(LIMITEDTO 2 DOF):Formulation of equations of motion - Free

FREEDOM

(MDOF)

SYSTEMS

6

15

Concept of response spectrum.

OF

MULTI-DEGREES

Π

	vibration – Determination of natural frequencies of vibration and mode shapes – Orthogonal properties of normal modes – Mode			
	superposition method of obtaining response.			
	FIRST INTERNAL EXAMINATION			
III	EARTHQUARE ENGINEERING Engineering Seismology – Earthquake phenomenon – Causes and effects of earthquakes – Faults – Structure of earth – Plate Tectonics– Elastic Rebound Theory – Earthquake Terminology – Source, Focus, Epicenter etc – Earthquake size – Magnitude and intensity of earthquakes – Classification of earthquakes – Seismic waves – Seismic zones – Seismic Zoning Map of India – Seismograms and Accelerograms.	A	6	15
IV	CODAL DESIGN PROVISIONS : Review of the latest Indian seismic code IS:1893 – 2002 (Part-I) provisions for buildings – Earthquake design philosophy – Assumptions – Analysis by seismic coefficient and response spectrum methods – Displacements and drift requirements – Provisions for torsion – Analysis of a multistoried building using Seismic Coefficient method.		8	15
SECOND INTERNAL EXAMINATION				
V	SEISMIC PLANNING : Plan Configurations – Torsion Irregularities – Re-entrant corners –Non-parallel systems – Diaphragm Discontinuity – Vertical Discontinuities in load path – Irregularity in strength and stiffness – Mass Irregularities – Vertical Geometric Irregularity – Proximity of Adjacent Buildings.		7	20
VI	CODAL DETAILING PROVISIONS: Review of the latest Indian codes IS: 4326 and IS: 13920 Provisions for ductile detailing of R.C buildings – Beam, column and joints.SHEAR WALLS: Types – Design of Shear walls as per IS: 13920 – Detailing of reinforcements.		9	20
END SEMESTER EXAMINATION				

Estd.

Maximum Marks: 100

Exam Duration: 3 hours

Part A -Module I & II: 2 questions out of 3 questions carrying 15 marks eachPart B - Module III & IV:2 questions out of 3 questions carrying 15 marks eachPart C - Module V & VI :2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P-Credits	Year of Introduction	
CE472	TRANSPORTATION PLANNING	3-0-0-3	2016	
	Prerequisite: NI	L		
Course Ob	ojectives:			
• To inte	expose the students to the dynamics of un eraction, the steps and techniques involved in the	ban travel patter	ns, land use transport ning process.	
Syllabus:	TROUBLOSE	CIC.		
Transportation planning process – Transportation Systems - Urban Travel Patterns and Urban Transportation Technologies - Urban Activity System - Four Step Planning process - Land use transport models.				
Course Ou	itcome:			
The studen	t will be able to calibrate and validate planning	g models, evaluate	various transportation	
planning al	ternatives.			
1 Dem	S: Non M. I. Introduction to Transportation	Dianning Unit	hinson of London	
1. BIU	key I W Metropolitan Transportation I	l Flaining, Huu Planning, Tata N	AcGraw Hill	
2. DR 3. Pat	pacostas C S and Prevedouros PD	Transportatio	n Engineering and	
Planning Prentice Hall				
References:				
1. Gal	1. Gallion, A.B. and Eisner, S., The Urban Pattern, East-West Press, New Delhi.			
2. Hu	tchinson, B.G., Principles of Urban	Transportation	System Planning,	
Mc	Graw Hill			
3. Ma	yer, M.D and Miller, E .J, Urban Transpo	ortation Planning	a Decision Oriented	
Approach, McGraw Hill.				
			End	
Module	Contents		Hours Exam	
]	Introduction: Role of transportation in the deve	elopment of a soc	iety	
	Land use-Transportation interaction - G	oal, objectives	and	

			10
I	Introduction: Role of transportation in the development of a society - Land use-Transportation interaction - Goal, objectives and constraints in transportation planning process – Transportation Systems overview - Transportation issues and challenges – Basic steps in systems planning process	6	15
п	Different modes of transport - Characteristics of different modes - integration of modes and interactions - impact on environment - Relationship between Movement and Accessibility – Hierarchy of transportation facilities - Brief Study of Urban Travel Patterns and Urban Transportation Technologies - Comprehensive Mobility Plan	7	15
FIRST INTERNAL EXAMINATION			
III	Urban Transportation Planning:Urban Activity System - Trip-based and Activity-based approaches - inventory, model building, forecasting and evaluation stages –Definition of study area – zoning - Urban Structure and its Characteristics	6	15

IV	Four Step Planning process – Trip generation – trip production and trip attraction models – regression and category analysis - Trip Distribution-Growth factor models, Gravity models - mode split models	8	15
SECOND INTERNAL EXAMINATION			
V	Route choice modeling - diversion curves - basic elements of transportation networks, coding, minimum path trees - traffic assignment - all- or- nothing assignments, capacity restraint techniques	8	20
VI	Land use transport models - Lowry derivative models - Quick response techniques - Non-Transport solutions for transport problems.	7	20

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A - Module I & II :	2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV:	2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI :	2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE474	MUNICIPAL SOLID WASTE MANAGEMENT	3-0-0-3	2016

Prerequisites: Nil

Course objectives:

- 1. To create an awareness of different types of solid waste generated in our environment and their ill effects
- 2. To study the various methods of collection, processing and disposal of solid wastes

Syllabus:

Solid wastes-Types, Properties, Characteristics. Generation of solid wastes, Collection of solid wastes, Processing techniques. Disposal technologies-Physical, Thermal, Biological methods. Energy from solid wastes

Course Outcomes:

- Students will have an awareness of the ill effects of increasing solid wastes
- Students will be able to understand the various methods available for managing solid wastes generated

Text Books

- 1. George Tchobanoglous, Frank Kreith et al "Hand book of solid waste management." Mc Graw hill publications -Newyork.
- 2. William A Worrell, Aarne Vesilind, Solid waste Engineering, Cengage learning
- 3. Howard S Peavy, Donald R Rowe, George Tchobanoglous, "Environmental Engineering" McGrawhill Education

References:

- 1. John Pichtel "Waste management Practices" Taylor& Francis publishers
- 2. David . A . Cornwell, Mackenzie . L .Davis "Introduction to Environmental Engineering" Mc Graw Hill International Edition .
- 3. Daniel . B. Botkin, Edward .A. Keller "Environmental Science" (Earth as a living plant) IV Edition ,John wiley& Sons Inc.
- 4. Robert . A. Corbitt "Hand Book of Environmental Engineering" Mc Graw hill publishing Company

COURSE PLAN				
Module	Contents	Hours	End Sem. Exam Marks %	
Ι	Wastes-Sources and characteristics - Categories of wastes- Municipal, Industrial, Medical, Universal, Construction and demolition debris, Radioactive, Mining, e wastes, Agricultural waste.	7	15	
II	Waste generation-Methods of estimation of Generation rate- Measure of quantities, Composition- Physical and chemical (simple problems). Storage of solid waste	7	15	
FIRST INTERNAL EXAMINATION				

III	Collection – collection services- collection systems, collection routes-Need for transfer operation. Resource conservation and recovery.	6	15	
IV	Processing techniques- Mechanical volume and size reduction, chemical volume reduction, component separation, Drying (simple problems)	6	15	
SECOND INTERNAL EXAMINATION				
V	Disposal of solid waste; Sanitary land fill- area method, trench method-advantages and disadvantages, Incineration- types of incinerators -parts of an incinerator-incinerator effluent gas composition	8	20	
VI	Composting- types of composting-Indore process, Bangalore process (advantages and disadvantages). Anaerobic digestion of wastes, Biogas digesters	8	20	
END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN (End Semester Exam)

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each

2014

Note: 1.Each part should have at least one question from each module