Course No.	Course Name	L-T-P - Credits	Year of Introduction
MA201	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4	2016

Course Objectives

COURSE OBJECTIVES

- To equip the students with methods of solving a general system of linear equations.
- To familiarize them with the concept of Eigen values and diagonalization of a matrix which have many applications in Engineering.
- To understand the basic theory of functions of a complex variable and conformal Transformations.

Syllabus

Analyticity of complex functions-Complex differentiation-Conformal mappings-Complex integration-System of linear equations-Eigen value problem

Expected outcome.

At the end of the course students will be able to

- (i) solve any given system of linear equations
- (ii) find the Eigen values of a matrix and how to diagonalize a matrix
- (iii) identify analytic functions and Harmonic functions.
- (iv)evaluate real definite Integrals as application of Residue Theorem
- (v) identify conformal mappings(vi) find regions that are mapped under certain Transformations

Text Book:

Erwin Kreyszig: Advanced Engineering Mathematics, 10th ed. Wiley

- 1.Dennis g Zill&Patric D Shanahan-A first Course in Complex Analysis with Applications-Jones&Bartlet Publishers
- 2.B. S. Grewal. Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- 3.Lipschutz, Linear Algebra, 3e (Schaums Series) McGraw Hill Education India 2005
- 4. Complex variables introduction and applications-second edition-Mark. J. Owitz-Cambridge Publication

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
	Complex differentiation Text 1[13.3,13.4] Limit, continuity and derivative of complex functions	3			
	Analytic Functions 2014	2			
I	Cauchy–Riemann Equation(Proof of sufficient condition of analyticity & C R Equations in polar form not required)-Laplace's Equation	2			
	Harmonic functions, Harmonic Conjugate	2	15%		
	Conformal mapping: Text 1[17.1-17.4]				
	Geometry of Analytic functions Conformal Mapping,	1			
II	Mapping $w = z^2$ conformality of $w = e^z$.	2	15%		

	The mapping $w = z + \frac{1}{z}$		
	Z December 1		
	Properties of $w = \frac{1}{z}$	1	
	Circles and straight lines, extended complex plane, fixed points		
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3	
	Conformal mapping by $w = \sin z \& w = \cos z$	3	
	(Assignment: Application of analytic functions in Engineering)	تد	
	FIRST INTERNAL EXAMINATION		
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]	2	
	Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method	2	
	Cauchy's Integral Theorem(without proof), Independence of	2	
	path(without proof), Cauchy's Integral Theorem for Multiply Connected Domains (without proof)		15%
III	Cauchy's Integral Formula- Derivatives of Analytic	2	
	Functions(without proof)Application of derivative of Analytical Functions		
	Taylor and Maclaurin series(without proof), Power series as Taylor		
	series, Practical methods(without proof)	2	
	Laurent's series (without proof)	2	
	Residue Integration Text 1 [16.2-16.4]	_	15%
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic functions	2	
	Talletions	7	
	Residue Integration Method, Formulas for Residues, Several	4	
IV	singularities inside the contour Residue Theorem.		
	Evaluation of Real Integrals (i) Integrals of rational functions of	3	
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int_{-\infty}^{\infty} f(x)dx$ (Type I, Integrals		
	from 0 to ∞) (Assignment : Application of Complex integration in Engineering)		
	SECOND INTERNAL EXAMINATION		
			20%
	Linear system of Equations Text 1(7.3-7.5)		
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1	
V	Gauss Elimination and back substitution, Elementary row operations,		
	Row equivalent systems, Gauss elimination-Three possible cases,	5	
	Row Echelon form and Information from it.	5	

	Linear independence-rank of a matrix	2	
	Vector Space-Dimension-basis-vector space R ³		
	Solution of linear systems, Fundamental theorem of non-homogeneous linear systems (Without proof)-Homogeneous linear systems (Theory only	1	
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%
	Determination of Eigen values and Eigen vectors-Eigen space	3	
VI	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2	
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4	
	(Assignment-Some applications of Eigen values(8.2))		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

Course No.	Course Name	L-T-P – Credits	Year of Introduction
CE201	MECHANICS OF SOLIDS	3-1-0-4	2016

Pre requisite: BE 100 Engineering Mechanics

Course Objectives: To enable the students to calculate stresses and strains generated in material due to external loads for various types of loading conditions

Syllabus: Concept of stress. Concept of strain. Stress-strain relations. Calculating internal forces (Normal force, shear force and bending moment diagrams) Behavior of axially loaded members. Behavior of members subjected to bending moments. Behavior of circular members subjected to Torsion. Shear stresses in beams. Transformation of plane stresses. Mohr circle. Concept of design of beams. Buckling of columns. Indeterminacy.

Expected outcome.

- 1. Ability to calculate internal forces in members subject to axial loads, shear, torsion and bending and plot their distributions
- 2. Ability to calculate normal, shear, torsion and bending stresses and strains
- 3. Ability to transform the state of stress at a point and determine the principal and maximum shear stresses using equations as well as the Mohr's circle
- 4. Understanding of column buckling and ability to calculate critical load and stress

Text Books:

- 1. Timoshenko , Strength of Materials Vol. I & Vol. II , CBS Publishers & Distributers, New Delhi
- 2. Rattan, Strength of Materials 2e McGraw Hill Education India 2011

Data Book (Approved for use in the examination): Nil

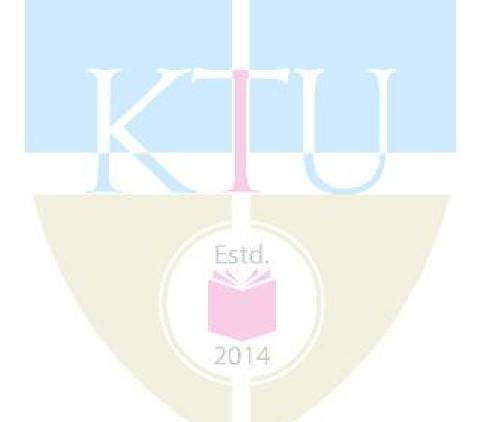
- 1. Crandall, An Introduction to Mechanics of Solids 3e McGraw Hill Education India 2014
- 2. Egor P Popov, Mechanics of solids, Prentice Hall of India, New Delhi
- 3. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, Prentice Hall India
- 4. Stephen H Crandall, N C Dahi, Thomas J L, M S Sivakumar, an introduction to Mechanics of Solids, McGraw hill Education, 3rd edition
- 5. Cheng, Statics and Strength of Materials 2e McGraw Hill Education India 2013
- 6. Hearn E.J., Mechanics of Materials, Pergamon Press, Oxford
- 7. Nash W A, Strength of Materials (SIE) (Schaum's Outline Series) 5e McGraw Hill Education India 2010
- 8. Rajput R.K. Strength of Materials, S.Chand&company Ltd., New Delhi
- 9. James M Gere & Stephen P Timoshenko, Mechanics of Materials, CBS Publishers & Distributers, New Delhi
- 10. Punmia B. C., A. K. Jain and A. K. Jain, Mechanics of Materials, Laxmi Publications(P) Ltd, New Delhi

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Review of Statics Types of external loads - internal stresses - normal and shear stresses - strain - Hooke's law - working stress - stress strain diagrams - Poisson's ratio - relationship between elastic constants		15%
II	Elongation of bars of constant and varying sections – statically indeterminate problems in tension and compression – Temperature effects – strain energy and complementary energy-strain energy due to tension, compression and shear	9	15%
	FIRST INTERNAL EXAMINATION		
Ш	Bending Moment & Shear force: Different types of beams- various types of loading –Relationship connecting intensity of loading, shearing force and bending moment- shear force and bending moment diagrams for cantilever beams and Simply supported beams for different types of loading.	9	15%
IV	Stresses in beams of symmetrical cross sections: Theory of simple bending –assumptions and limitations – Normal stresses in beams- Moment of resistance - beams of uniform strength - beams of two materials – strain energy due to bending - shearing stresses in beams.	9	15%
	SECOND INTERNAL EXAMINATION		
V	Analysis of stress and strain on oblique sections: Stress on inclined planes for axial and biaxial stress fields - principal stresses - Mohr's circle of stress Thin and Thick Cylinders: Stresses in thin cylinders - thick cylinders - Lame's equation - stresses in thick cylinders due to internal and external pressures Torsion: Torsion of solid and hollow circular shaftsPure shear- strain energy in pure shear and torsion. Springs: Close coiled and open coiled helical springs.	9	20%
VI	Deflection of statically determinate beams: Differential equation of the elastic curve - Method of successive integration, Macaulay's method, Method of superposition, moment area method. Theory of columns: Direct and bending stresses in short columns- Kern of a section. Buckling and stability-Euler's buckling/crippling load for columns with different end conditions- Rankine's formula	11	20%

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks: 100 Exam Duration: 3 Hrs

The question paper shall have three parts.


Part A -Module I & II : Answer 2 questions out of 3 questions (15 marks each)

Part B - Module III & IV: Answer 2 questions out of 3 questions (15 marks each)

Part C - Module V & VI: Answer 2 questions out of 3 questions (20 marks each)

Note: 1.Each part should uniformly cover the two modules in that part.

2. Each question can have a maximum of 4 subdivisions (a,b,c,d), if needed.

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE203	FLUID MECHANICS - I	3-1-0-4	2016

Course Objectives

- 1. To understand the basic properties of the fluid, fluid statics, kinematics, and fluid dynamics so as to analyse and appreciate the complexities involved in solving the fluid flow problems.
- 2. To give an introduction to the fundamentals of fluid flow and its behavior so as to equip the students to learn related subjects and their applications in the higher semesters.
- 3. To develop the skill for applying the fluid statics, kinematics and dynamics of fluid flow concepts for solving civil engineering problems.

Syllabus

Fluid Statics, Fluid pressure, Buoyancy and floatation, Fluid Kinematics, Dynamics of fluid flow, Flow through orifice and notches, Flow through pipes, Boundary layer, Drag and lift on Immersed bodies

Course Outcomes:

- 1. Students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium, so as to solve real life problems in fluid mechanics.
- 2. Students will gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

Text Books

- 1. Modi P. N. and S. M. Seth, Hydraulics & Fluid Mechanics, S.B.H Publishers, New Delhi, 2002.
- 2. Subramanya K., Theory and Applications of Fluid Mechanics, Tata McGraw-Hill, 1993.

- 1. Streeter.V.L. Fluid Mechanics, Mc Graw Hill Publishers.
- 2. Bruce R Munson, Donald F Young . Fundamentals of Fluid Mechanics, John Wiley & sons, 2011.
- 3. Jain A. K., Fluid Mechanics, Khanna Publishers, Delhi, 1996.
- 4. Joseph Katz, Introductory Fluid Mechanics, Cambridge University Press, 2015
- 5. Arora.K.R. Fluid Mechanics, Hydraulics and Hydraulic Machines, Standard Publishers, 2005.
- 6. Narasimhan S., A First Course in Fluid Mechanics, University Press (India) Pvt. Ltd., 2006.
- 7. Frank.M.White, Fluid Mechanics, Mc Graw Hill, 2013.
- 8. Mohanty. A.K. Fluid Mechanics, Prentice Hall, New Delhi, 2011
- 9. Narayana Pillai, N. Principles of Fluid Mechanics and Fluid Machines, University Press, 2011.
- 10. Kumar.D.N. Fluid Mechanics and Fluid power Engineering, S.K.Kataria & sons, 2013.

COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks		
I	Fluid properties - density – specific gravity - surface tension and capillarity - vapour pressure - viscosity and compressibility - Classification of Fluids (No questions to be asked). Fluid statics: Fluid pressure, variation of pressure in a fluid, measurement of pressure using manometers-simple manometers, differential manometers, Pressure head. Forces on immersed plane and curved surfaces. Pressure distribution diagram for vertical surfaces, Practical application of total pressure (spillway gates). Buoyancy and Floatation: Buoyant force, stability of floating and submerged bodies, metacentre and metacentric height, Analytical and experimental determination of metacentric height.	LAM [C8A	15		
II	Kinematics of fluid flow: Methods of describing fluid motion, Lagrangian and Eulerian methods, Types of fluid flow: steady and unsteady flow, uniform and non-uniform flow, one, two and three dimensional flow, laminar and turbulent flow, rotational and irrotational flow. Types of flow lines: stream line, path line, streak lines, conservation of mass, equation of continuity in one, two and three dimensions, (Derivation in Cartesian co-ordinate system only) Velocity & Acceleration of fluid particle, convective and local acceleration, Deformation of fluid elements: circulation and vorticity, velocity potential, stream function, equipotential lines, flow net, uses of flow net; Vortex motion, free and forced vortex (no problems).	8	15		
	FIRST INTERNAL EXAMINATION	ON			
III	Dynamic of fluid flow: Euler's equation of motion and integration of Euler's equation of motion along a streamline. Bernoulli's Equation, Energy correction factors, Applications of Bernoulli's equation: Pitot tube, Venturimeter and orifice meter. Momentum Principle- Steady flow momentum equation- Momentum correction factor, Force computation on a pipe bend	8	15		
IV	Flow through orifices: Different types of orifices, Flow over a sharp edged orifice, Hydraulic coefficients – Experimental determination of these	8	15		

	CC :			
	coefficients, flow through large rectangular orifice,			
	Flow through submerged orifices, flow under			
	variable heads, time of emptying.			
	Flow over weirs: flow over rectangular, triangular and			
	trapezoidal sharp crested weir, Cipolletti weir, Broad			
	crested weir, Submerged weirs, Proportional weir.			
	SECOND INTERNAL EXAMINAT	ION		
	Flow through pipes: Viscous flow - Shear stress,			
	pressure gradient relationship - laminar flow between	T A A		
	parallel plates - Laminar flow through circular tubes	A	V	
	(Hagen Poiseulle's Eqn) - Hydraulic and energy gradient	L L L L L	1.1	
1 7	- flow through pipes - Darcy -Weisbach's equation -	12		20
V				
	pipe roughness -friction factor- Moody's diagram- Major			
	and minor losses of flow in pipes - Pipes in series and in	Y		
	parallel.	- L		
	Boundary layer theory-no slip condition, boundary			
	layer thickness, boundary layer growth over long thin			
	plate, laminar, turbulent boundary layer, laminar sub			
	layer, Momentum integral equation of boundary layer			
VI	(no derivation), Blasius boundary layer equations for	12		20
V 1	laminar and turbulent boundary layer.	12		20
	Drag and lift on Immersed bodies-Pressure drag and			
	friction drag, profile drag, Drag and lift co-efficient-	500		
	computation of drag on a flat plate. Separation of			
	boundary layer and control.			
	END SEMESTER EXAMINATION	ON		
DIE OFFICE PROPERTY OF THE PRO				

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks: 100 Exam Duration: 3 Hrs

The question paper shall have three parts.

Part A - Module I & II : Answer 2 questions out of 3 questions (15 marks each)

Part B - Module III & IV: Answer 2 questions out of 3 questions (15 marks each)

Part C - Module V & VI: Answer 2 questions out of 3 questions (20 marks each)

Note: 1.Each part should uniformly cover the two modules in that part.

2. Each question can have a maximum of 4 subdivisions (a,b,c,d), if needed.

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE205	ENGINEERING GEOLOGY	3-0-1-4	2016

Prerequisite: NIL

Course Objectives

Awareness about earth resources and processes to be considered in various facets of civil engineering

1. Appreciation of surface of earth as the fundamental foundation structure and the natural phenomena that influence its stability

Syllabus:

Relevance of geology in Civil Engineering. Subdivisions of Geology. Interior of the earth. Weathering, its engineering significance and laboratory tests used in civil engineering. Soil profile. Hydrogeology-occurrence of groundwater, Types of aquifers and their properties. Engineering significance of subsurface water in construction. Methods to control of subsurface water.

Minerals- Properties that affect the strength of minerals. Physical properties and chemical composition of common rock forming minerals

Earth quakes- in relation to internal structure of earth and plate tectonics

Types of rocks. Brief account of selected rocks. Rock features that influence the strength of rocks as construction material. Rock types of Kerala. Engineering properties of rocks.

Attitude of geological structures- strike and dip. Deformation structures and their engineering significance. Geological factors considered in the construction of engineering structures.

Introduction to natural hazards and their management. Coastal Processes and protection strategies. Soil erosion and conservation measures.

Expected Outcomes:

- 1. The course would help the student to understand of the factors that determine the stability of earth's surface
- 2. The student would comprehend better the earth resources used as building materials

Text Books / References:

- 1. Duggal, SK,Rawal,N and Pandey, HK (2014) Engineering Geology, McGraw Hill Education, New Delhi
- 2. Garg, SK (2012) Introduction to Physical and Engineering Geology, Khanna Publishers, New Delhi
- 3. Gokhale, KVGK (2010) Principles of Engineering Geology, BS Pubications, Hyderabad
- 4. Kanithi V (2012) Engineering Geology, Universities Press (India) Ltd., Hyderabad
- 5. Singh, P (2004) Engineering and General Geology, S. K. Kataria and Sons, New Delhi
- 6. Bennison, GM, Olver, PA and Moseley, KA (2013) An introduction to geological structures and maps, Routledge, London
- 7. Gokhale, NW (1987) Manual of geological maps, CBS Publishers, New Delhi

	COURSE PLAN					
Module	Contents	Hours	End Sem.Exam Marks %			
I	Relevance of geology in Civil Engineering. Subdivisions of Geology. Weathering, types and its engineering significance. Laboratory tests used in civil engineering for assessing intensity of weathering. Engineering classification of weathered rock masses. Soil profile. Geological classification of soils.	L ₈ A1 [CA	15 L			
II	Hydrogeology-occurrence of groundwater, Types of aquifers, permeability / hydraulic conductivity. Engineering significance of subsurface water-problems created in construction, as an erosional agent. Methods to control of subsurface water-barriers and liners, drains and wells.(Resistivity survey of groundwater may be demonstrated)	11	15			
	FIRST INTERNAL EXAMINATION					
III	Minerals- Properties that affect the strength of minerals. Physical properties and chemical composition of following minerals -quartz, feldspars (orthoclase and plagioclase), micas (biotite and muscovite), amphibole (hornblende), pyroxene (augite and hypersthene), gypsum, calcite, clay minerals (kaolinite), their chemical formulae. Earth quakes- in relation to internal structure of earth and plate tectonics	8	15			
IV	Rocks as aggregates of minerals. Basic concepts- igneous, sedimentary and metamorphic rocks, Brief account of following rocks- granite, basalt, sandstone, limestone, shale, marble and quartzite. Rock features that influence the strength of rocks as construction material-concepts of lineation and foliation-schistosity and gneissosity. Rock types of Kerala. Brief account of engineering properties of rocks used as construction material (building and foundation) and road aggregates. Assessment of these properties.(Students should be taught to identify common rock forming minerals and common rocks based on their physical properties).	10	15			
	SECOND INTERNAL EXAMINAT	ION				
V	Attitude of geological structures- strike and dip. Brunton compass. Deformation structures and	11	20			

	their engineering significance- folds, faults and			
	joints. Geological factors considered in the			
	construction of dams and reservoirs, tunnels. (Simple exercises based on geological/topographic maps			
	for determination of dip, apparent dip and thickness of			
	lithological beds and preparation of geological cross			
	sections should be performed. The students should be			
	instructed in handling clinometer/Brunton compass to	T. A 1		
	determine strike and dip)	$\Lambda \Delta \Lambda$	W	
VI	Introduction to natural hazards-Mass movements (Landslides), floods, their common management strategies. Coastal Processes- waves, currents and landforms. Types of coastal protection strategies. Soil	IC ₈ A	L	20
	erosion- causes and types and soil conservation measures. END SEMESTER EXAMINATIO	Y		

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100 Exam Duration: 3 Hrs

The question paper shall have three parts.

Part A -Module I & II : Answer 2 questions out of 3 questions (15 marks each)

Part B - Module III & IV: Answer 2 questions out of 3 questions (15 marks each)

Part C - Module V & VI: Answer 2 questions out of 3 questions (20 marks each)

Note: 1.Each part should uniformly cover the two modules in that part.

2. Each question can have a maximum of 4 subdivisions (a,b,c,d), if needed.

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE207	SURVEYING	3-0-0-3	2016

Course objectives:

- To introduce the principle of surveying
- To impart awareness on the various fields of surveying and types of instruments
- To understand the various methods of surveying and computations

Syllabus: Basics of Surveying, Levelling and Contouring, Area and Volume Computation, Theodolite Survey, Mass Diagram, Triangulation, Theory of Errors, Electronic Distance Measurement, Total Station Survey

Course Outcomes: After successful completion of the course, the students will possess knowledge on the basics of surveying and different methods of surveying

Text Books:

- 1. Prof. T.P.Kenetkar & Prof.S.V.Kulkarni Surveying and Levelling, Pune Vidyarthi Griha Prakashan,2004
- 2. N N Basak, Surveying and Levelling, Mc GrawHill Education

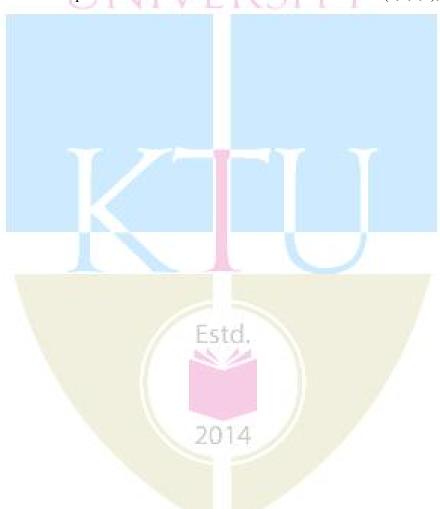
- 1. R.Agor A Text book of Surveying and Levelling, Khanna Publishers, 2005
- 2. C. Venkatramaiah, Textbook of Surveying, Universities Press (India) Private Limited 2011
- 3. James M Andersen, Edward M Mikhail, Surveying Theory and Practice, McGraw Hill Education
- 4. Dr. B.C.Punmia , Ashok Kumar Jain & Arun Kumar Jain Surveying , Laxmi publications (P)Ltd , 2005
- 5. S.K.Duggal Surveying Vol. I, Tata Mc Graw Hill Ltd , Reprint 2015.

	COURSE PLAN		
Module	Contents	Hours	Sem.Exam Marks
I	Introduction to Surveying- Principles, Linear, angular and graphical methods, Survey stations, Survey lines- ranging, Bearing of survey lines, Local attraction, Declination, Dip, Latitude and Departure, Methods of orientation, Principle of resection	LA	15
II	Levelling: Principles of levelling- Dumpy level-booking and reducing levels, Methods- simple, differential, reciprocal leveling, profile levelling and cross sectioning. Digital and Auto Level, Errors in levelling Contouring: Characteristics, methods, uses.	Y ₇	15
	FIRST INTERNAL EXAMINATION	ON	
III	Area and Volume: Various methods of computation. Theodolite survey: Instruments, Measurement of horizontal and vertical angle. Mass diagram: Construction, Characteristics and Uses.	6	15
IV	Triangulation: Triangulation figures, Strength of figure, Triangulation stations, Inter visibility of stations, Towers and signals – Satellite Stations and reduction to centre.	8	15
	SECOND INTERNAL EXAMINAT	ION	
V	Theory of Errors – Types, theory of least squares, Weighting of observations, Most probable value, Application of weighting, Computation of indirectly observed quantities - method of normal equations.	8	20
VI	Electromagnetic distance measurement (EDM) – Principle of EDM, Modulation, Types of EDM instruments, Distomat Total Station – Parts of a Total Station – Accessories – Advantages and Applications, Introduction to Astronomical terms, Field Procedure for total station survey, Errors in Total Station Survey.	6	20
	END SEMESTER EXAMINATION)N	

QUESTION PAPER PATTERN (End semester exam):

Maximum Marks :100 Exam Duration: 3 Hrs

The question paper shall have three parts.


Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note: 1. Each part should uniformly cover the two modules in that part.

2. Each question can have a maximum of 4 subdivisions (a,b,c,d), if needed

Course code	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016

Course Objectives

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats, Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

The students will be able to

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

Resource Book:

Life Skills for Engineers, Complied by ICT Academy of Kerala, McGraw Hill Education (India) Private Ltd., 2016

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

Module	Course Plan Contents		ours T-P P	Sem. Exam Marks
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing	2	2	
I	rechnical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports. Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language		4	See evaluation scheme
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.	3	4	Sec

	Need for Creativity in the 21 st century, Imagination, Intuition,	2	
II	Experience, Sources of Creativity, Lateral Thinking, Myths of creativity Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence. Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections. Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.	2	2
	Introduction to Groups and Teams, Team Composition,		
	Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3	
Ш	Group Problem Solving, Achieving Group Consensus. Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building &	3	2
	Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams.		
	Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development.	7	2
	Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully.	3	
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy,		2
IV	Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories.	3	
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3	
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2

e 1. I N	Weapons development, engineers as managers, consulting ingineers, engineers as expert witnesses and advisors, moral eadership, sample code of Ethics like ASME, ASCE, IEEE, institution of Engineers(India), Indian Institute of Materials Management, Institution of electronics and telecommunication ingineers(IETE), India, etc.	3		
I	ntroduction, a framework for considering leadership,	4		
a	entrepreneurial and moral leadership, vision, people selection and development, cultural dimensions of leadership, style,	V		
(ollowers, crises. Growing as a leader, turnaround leadership, gaining control, rust, managing diverse stakeholders, crisis management	L	2	
	mplications of national culture and multicultural leadership Types of Leadership, Leadership Traits.	2		
I	eadership Styles, VUCA Leadership, DART Leadership,			
	Transactional vs Transformational Leaders, Leadership Grid,		2	
F	Effective Leaders, making of a Leader, Formulate Leadership			
	END SEMESTER EXAM			

EVALUATION SCHEME

Internal Evaluation

(Conducted by the College)

Total Marks: 100

Part - A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i) Communication Skills – 10 marks (ii) Subject Clarity – 10 marks (iii) Group Dynamics – 10 marks (iv) Behaviors & Mannerisms – 10 marks

(Marks: 40)

Part - B

(To be started from 31st working day and to be completed before 60th working day of the semester)

- 2. Presentation Skills Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;
- (i) Communication Skills* 10 marks
- (ii) Platform Skills** 10 marks
- (iii) Subject Clarity/Knowledge 10 marks

(Marks: 30)

Part - C

(To be conducted before the termination of semester)

- 3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;
 - (i) Usage of English & Grammar 10 marks
 - (ii) Following the format 10 marks
 - (iii) Content clarity 10 marks

(Marks: 30)

External Evaluation

(Conducted by the University)

Total Marks: 50 Time: 2 hrs.

Part - A

Short Answer questions

There will be one question from each area (five questions in total). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

^{*} Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

^{**} Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

(*Marks*: $1 \times 20 = 20$)

2014

Course No.	Course Name	L-T-P - Credits	Year of Introduction
CE231	CIVIL ENGINEERING DRAFTING LAB	0-0-3-1	2016

Prerequisite: BE 110 - Engineering Graphics

Course Objectives:

- 1. To introduce the fundamentals of Civil Engineering drawing.
- 2. To understand the principles of planning
- 3. To learn drafting of buildings.
- 4. To impart knowledge on drafting software such as AutoCAD.

List of Exercises : (at least 10 exercises / plates are mandatory)

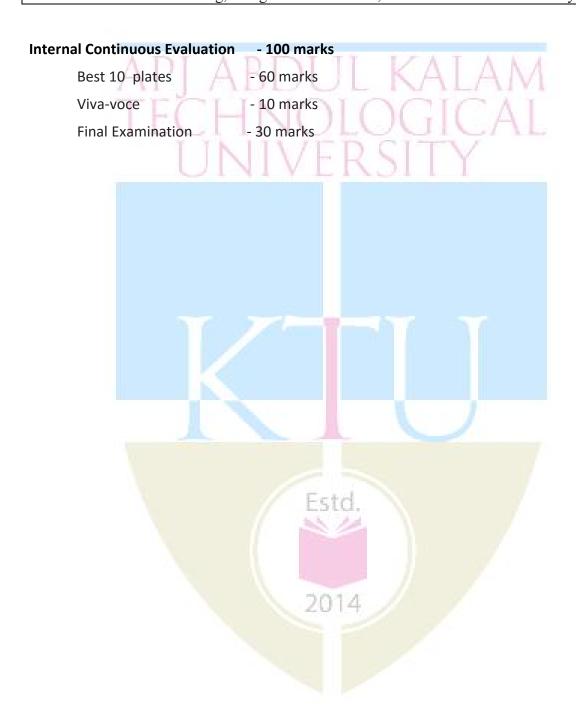
- 1. Paneled Doors
- 2. Glazed Windows and Ventilators in wood
- 3. Steel windows
- 4. Roof truss in steel sections
- 5. Reinforced concrete staircase
- 6. Residential buildings with flat roof
- 7. Residential buildings with tiled roof
- 8. Preparation of site plan and service plans as per building rules
- 9. Building Services (for single and two storied buildings only). Septic tanks and soak pit detailed drawing
- 10. Two storied and multi storied buildings
- 11. Public buildings like office, dispensary, post office, bank etc.
- 12. Industrial buildings with trusses

Expected outcome.

To accomplish the abilities/skills for the following.

- 1. To understand the drawings of various components of buildings
- 2. Preparation of building drawings.
- 3. Interpretation of building drawings.
- 4. Use of a drafting software.

Text Books:


- 1. National Building Code of India.
- 2. Kerala Municipal Building Rules.
- 3. Dr. Balagopal T.S. Prabhu, Building Drawing and Detailing, Spades Publishers, Calicut
- 4. AutoCAD Essentials, Autodesk official Press, John Wiley & Sons, USA

References:

1. Shah, M.G., Kale, C. M. and Patki, S.Y. Building Drawing With An Intergrated Approach to Built Environment, Tata McGraw Hill Publishing Company Limited, New Delhi

Points to note:

- 1. Equal weightage to be given for manual drafting and drafting using computer aided drafting software.
- 2. Evaluation of drawing, along with a viva-voce, to be done at the end of every day class.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
CE233	SURVEYING LAB	0-0-3-1	2016

Course Objectives:

- 1. To equip the students to undertake survey using tacheometer
- 2. To equip the students to undertake survey using total station
- 3. To impart awareness on distomat and handheld GPS

List of Exercises/Experiments : (10 to 12 exercises are mandatory)

1.	Introduction to conve	ntional surveying	-1 class
2.	Levelling	(dumpy level)	-2 class

- 3. Theodolite surveying (Theodolite) -3class
- 4. Total Station survey (Total Station) -5 class
 - a. Heights and Distance
 - b. Area computation
 - c. Downloading
- 5. Study of instruments Automatic level, digital level, Handheld GPS -2 class
- 6. Test -2 class

Expected outcome.

Ability to undertake survey using level and theodolite and total station

Internal Continuous Evaluation - 100 marks

Record/output (Average) - 60 marks

Viva-voce (Average) - 10 marks

Final practical examination – 30 marks

Course No.	Course Name	L-T-P - Credits	Year of Introduction
MA202	Probability distributions,	3-1-0-4	2016
	Transforms and Numerical Methods		

Course Objectives

- To introduce the concept of random variables, probability distributions, specific discrete and continuous distributions with practical application in various Engineering and social life situations.
- To know Laplace and Fourier transforms which has wide application in all Engineering courses.
- To enable the students to solve various engineering problems using numerical methods.

Syllabus

Discrete random variables and Discrete Probability Distribution.

Continuous Random variables and Continuous Probability Distribution.

Fourier transforms.

Laplace Transforms.

Numerical methods-solution of Algebraic and transcendental Equations, Interpolation.

Numerical solution of system of Equations. Numerical Integration, Numerical solution of ordinary differential equation of First order.

Expected outcome.

After the completion of the course student is expected to have concept of

- (i) Discrete and continuous probability density functions and special probability distributions.
- (ii) Laplace and Fourier transforms and apply them in their Engineering branch
- (iii) numerical methods and their applications in solving Engineering problems.

Text Books:

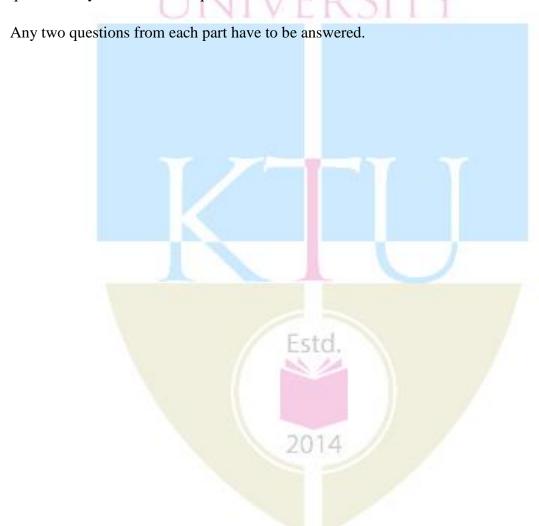
- 1. Miller and Freund's "Probability and statistics for Engineers"-Pearson-Eighth Edition.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.

- 1. V. Sundarapandian, "Probability, Statistics and Queuing theory", PHI Learning, 2009.
- 2. C. Ray Wylie and Louis C. Barrett, "Advanced Engineering Mathematics"-Sixth Edition.
- 3. Jay L. Devore, "Probability and Statistics for Engineering and Science"-Eight Edition.
- 4. Steven C. Chapra and Raymond P. Canale, "Numerical Methods for Engineers"-Sixth Edition-Mc Graw Hill.

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
	Discrete Probability Distributions. (Relevant topics in section 4.1,4,2,4.4,4.6 Text1)				
	Discrete Random Variables, Probability distribution function,	2			
I	Cumulative distribution function. Mean and Variance of Discrete Probability Distribution.	2			
	Binomial Distribution-Mean and variance.	2			
	Poisson Approximation to the Binomial Distribution. Poisson	2			
	distribution-Mean and variance.		15%		

	Continuous Probability Distributions. (Relevant topics in		
	section 5.1,5.2,5.5,5.7 Text1)		
	Continuous Random Variable, Probability density function,	2	
	Cumulative density function, Mean and variance.		
II	Normal Distribution, Mean and variance (without proof).	4	
	Uniform Distribution.Mean and variance.	2 2	
	Exponential Distribution, Mean and variance.	2	
			15%
	FIRST INTERNAL EXAMINATION	1	13%
	Fourier Integrals and transforms. (Relevant topics in section	VI	15%
	11.7, 11.8, 11.9 Text2)		1570
	Fourier Integrals. Fourier integral theorem (without proof).	3	
III	Fourier Transform and inverse transform.		
	Fourier Sine & Cosine Transform, inverse transform.	3	
	Tourier Sine & Cosine Transform, inverse transform.	3	
			15%
	Laplace transforms. (Relevant topics in section		
	6.1,6.2,6.3,6.5,6.6 Text2)		
	Laplace Transforms, linearity, first shifting Theorem.	3	
	Transform of derivative and Integral, Inverse Laplace	4	
IV	transform, Solution of ordinary differential equation using		
	Laplace transform.		
	Unit step function, second shifting theorem.	2	
	Convolution Theorem (without proof).	2	
	Differentiation and Integration of transforms.	2	
	SECOND INTERNAL EXAMINATION		
	Numerical Techniques. (Relevant topics in	1	20%
	section.19.1,19.2,19.3 Text2)		2070
	333333333333333333333333333333333333333		
	Solution Of equations by Iteration, Newton- Raphson Method.	2	
\mathbf{V}			
V	Interpolation of Unequal intervals-Lagrange's Interpolation	2	
	formula.		
	Interpolation of Equal intervals-Newton's forward difference	3	
	formula, Newton's Backward difference formula.		
	Numerical Techniques. (Relevant topics in section		20%
	19.5,20.1,20.3, 21.1 Text2)		2070
	Solution to linear System- Gauss Elimination, Gauss Seidal	3	
	Iteration Method.	3	
VI	INCIMUON TITOMICO.	2	
VI	Numeric Integration-Transzoidal Rule, Simpson's 1/3 Rule	1	
VI	Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. Numerical solution of firstorder ODE-Euler method.	3 3	
VI	Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order).	3	

QUESTION PAPER PATTERN:


Maximum Marks: 100 Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE202	STRUCTURAL ANALYSIS -I	3-1-0-4	2016

Prerequisite: CE201 Mechanics of Solids

Course objectives:

• To equip the students with the comprehensive methods of structural analysis with emphasis on analysis of elementary structures.

Syllabus:

Truss analysis, Displacement response of statically determinate structural systems using energy methods, Principle of virtual work, Statically indeterminate structures, Strain Energy methods, Moving loads and influence lines, Cables and Suspension bridges, Arches.

Expected Outcomes:

The students will be able to

- i. analyse trusses and study displacement response of statically determinate structural systems using energy methods:
- ii. apply unit load method and strain energy method for determination of deflection of statically determinate beams, frames & pin jointed trusses
- iii. analyse statically indeterminate structures using strain energy method and method of consistent deformation
- iv. know about moving loads and influence lines
- v. know about Statically determinate and indeterminate suspension bridges and arches

Text Books:

- 1. Gere and Timoshenko, Mechanics of materials, CBS. Publishers
- 2. Kenneth Leet, Chia M Uang& Anne M Gilbert., Fundamentals of Structural Analysis, McGraw Hill
- 3. R.Vaidyanathan and P.Perumal, Comprehensive Structural Analysis Volume I & II, Laxmi Publications (P) Ltd
- 4. Wang C.K., Intermediate Structural Analysis, McGraw Hill

- 1. Aslam Kassimali., Structural Analysis, Cenage Learning
- 2. Chandramouli P N, Structural Analysis I Analysis of Statically Determinate Structures, Yes DeePublishing Pvt Ltd., Chennai, Tamil Nadu.
- 3. DevdasMenon, Structural Analysis, Narosa Publications
- 4. Hibbeler., Structural Analysis, Pearson Education
- 5. Kinney S., Indeterminate Structural Analysis, Oxford & IBH
- 6. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, Printice Hall India
- 7. Reddy C.S., Indeterminate Structural Analysis, Tata McGraw Hill
- 8. Timoshenko S.P.& Young D.H., Theory of Structures, McGraw Hill

	COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks			
I	TRUSS ANALYSIS: Analysis of determinate truss-Methods of	8	15%			

igints and sections (Numerical problems)		
,		
5. 1		
	1	
	V.I	
pin jointed trusses (simple numerical problems)	0	15%
Concepts of temperature effects and lack of fit.(No numerical	9	13%
problems)		
Statically indeterminate structures: Degree of static and kinematic		
method(step by step procedure)		
•		
* *	9	15%
•		
lines for reaction, shear force and bending moment in simply		
supported beams and over hanging beams - analysis for different	10	15%
types of moving loads - single concentrated load - several		
L-AILL.		
1		
		T
2014	10	20%
5 to F to		
· .		
any section of a parabolic and segmental arch due to simple cases of	10	20%
loading. Moving loads on three hinged arches (simple cases of		
	Concepts of temperature effects and lack of fit. (No numerical problems) Statically indeterminate structures: Degree of static and kinematic indeterminacies – Introduction to force and displacement method(step by step procedure) FIRST INTERNAL EXAMINATION Strain Energy methods: Analysis of beams, frames and trusses with internal and external redundancy – (Simple problems with maximum two redundants) Concepts of effect of prestrain, lack of fit, temperature changes and support settlement. (No numerical problems) Method of Consistent deformations: Analysis of beams frames and trusses with internal and external redundancy (Simple problems with maximum two redundants) Concepts of effect of prestrain, lack of fit, temperature changes and support settlement. (No numerical problems) Moving loads and influence lines. Introduction to moving loads - concept of influence lines - influence lines for reaction, shear force and bending moment in simply supported beams and over hanging beams - analysis for different	Elastic theorems and energy principles - strain energy due to axial load, bending moment, shear and torsion - strain energy method, Castigliano's method for deflection (Derivations only) Principle of virtual work - Unit load method-Betti's theorem - Maxwell's law of reciprocal deflections - principle of least work - application of unit load method and strain energy method for determination of deflection of statically determinate beams, frames - pin jointed trusses (simple numerical problems) Concepts of temperature effects and lack of fit.(No numerical problems) Statically indeterminate structures: Degree of static and kinematic indeterminacies - Introduction to force and displacement method(step by step procedure) FIRST INTERNAL EXAMINATION Strain Energy methods: Analysis of beams, frames and trusses with internal and external redundancy - (Simple problems with maximum two redundants) Concepts of effect of prestrain, lack of fit, temperature changes and support settlement.(No numerical problems) Method of Consistent deformations: Analysis of beams frames and trusses with internal and external redundancy(Simple problems with maximum two redundants) Concepts of effect of prestrain, lack of fit, temperature changes and support settlement.(No numerical problems) Moving loads and influence lines. Introduction to moving loads - concept of influence lines - influence lines for reaction, shear force and bending moment in simply supported beams and over hanging beams - analysis for different types of moving loads - single concentrated load - several concentrated loads, uniformly distributed load on shorter and longer than the span. SECOND INTERNAL EXAMINATION Cables: Analysis of forces in cables under concentrated and uniformly distributed loads - Anchor Cables Suspension Bridges: Un-stiffened suspension bridges, maximum tension in the suspension cable and backstays, pressure on towers. Arches: Theory of arches - Eddy's theorem - analysis of three

QUESTION PAPER PATTERN (End semester examination):

Maximum Marks :100 Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE204	CONSTRUCTION TECHNOLOGY	4-0-0-4	2016

Course objectives:

- To study details regarding properties and testing of building materials,
- To study details regarding the construction of building components
- To study properties of concrete and concrete mix design
- To impart the basic concepts in functional requirements of building and building services.
- To develop understanding about framed construction and building failures

Syllabus:

Construction Materials –. Timber -Mortar – Iron and Steel –. Structural steel – Modern materials. Concrete–Admixtures –Making of concrete -Properties of concrete – mix proportioning

Building construction - foundations -Introduction to Cost-effective construction -Masonry - Lintels and arches -Floors and flooring -

Roofs and roof coverings -Doors, windows and ventilators -Finishing works. Tall Buildings – steel and concrete frame –prefabricated construction – slip form construction. Vertical transportation – Stairs –Elevators – Escalators –ramps.

- Building failures and Retrofitting-failures in RCC and Steel structures- Foundation failure-

Expected Outcomes:

The students will be able to

- i. understand construction materials, their components and manufacturing process
- ii. know the properties of concrete and different mix design methods
- iii. understand the details regarding the construction of building components
- iv. analyse and apply learning of materials, structure, servicing and construction of masonry domestic buildings.
- v. define and describe the concepts and design criteria of tall framed and load bearing buildings.

Text books

- 1. Arora and Bindra, Building construction, Dhanpath Rai and Sons.
- 2. Punmia B. C, Building construction. Laxmi Publications
- 3. Rangwala S C., Engineering Materials, Charotar Publishers
- 4. Shetty M.S., Concrete Technology, S. Chand & company.

Reference Books

- 1. Adler R, Vertical Transportation for Building, American Elsevier Pub.
- 2. G C Sahu & Joygopal Jena., Building Materials and construction, McGraw Hill Education
- 3. Gambhir M L, Concrete Technology, Tata McGrawHill.
- 4. Krishna Raju N, Design of Concrete Mixes, CBS publishers.
- 5. Mcking T.M, Building Failures, Applied Science Pub.
- 6. National Building Code.
- 7. Neville A.M. and Brooks.J.J, Concrete Technology, Pearson Education.
- 8. Smith P & Julian W. Building services, Applied Science Pub.
- 9. Tall building systems & concepts, Monograph on planning and design of Tall building,

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks		
I	Properties of masonry materials – review of specifications; Mortar – Types – Sand – properties – uses. Timber products: properties and uses of plywood, fibre board, particle board. Iron and Steel – Reinforcing steel – types – specifications. Structural steel – specifications Miscellaneous materials (only properties, classifications and their use in construction industry): Glass, Plastics, A.C. Sheets, Bitumen, Adhesives, Aluminium	9	15%		
II	Concrete – Aggregates – Mechanical & Physical properties and tests – Grading requirements – Water quality for concrete – Admixtures – types and uses – plasticizers – accelerators – retarders – water reducing agents Making of concrete - batching – mixing – types of mixers – transportation – placing – compacting – curing Properties of concrete – fresh concrete – workability – segregation and bleeding - factors affecting workability & strength – tests on workability – tests for strength of concrete in compression, tension & flexure Concrete quality control – statistical analysis of results – standard deviation –acceptance criteria – mix proportioning (B.I.S method) – nominal mixes.	9	15%		
	FIRST INTERNAL EXAMINATION				
Ш	Building construction - Preliminary considerations for shallow and deep foundations Masonry - Types of stone masonry - composite walls - cavity walls and partition walls -Construction details and features - scaffoldings Introduction to Cost-effective construction - principles of filler slab and rat-trap bond masonry	9	15%		
IV	Lintels and arches – types and construction details. Floors and flooring – different types of floors and floor coverings Roofs and roof coverings – different types of roofs – suitability – types and uses of roofing materials Doors, windows and ventilators – Types and construction details Finishing works – Plastering, pointing, white washing, colour washing, distempering, painting. Methods of providing DPC. Termite proofing	9	15%		
	SECOND INTERNAL EXAMINATION				

Building failures – General reasons – classification – Causes of failures in RCC and Steel structures, Failure due to Fire, Wind and Earthquakes. Foundation failure – failures by alteration, improper maintenance, overloading. Retrofitting of structural components - beams, columns and slabs	V	Tall Buildings – Framed building – steel and concrete frame – structural systems –erection of steel work–concrete framed construction– formwork – construction and expansion. joints Introduction to prefabricated construction – slip form construction Vertical transportation: Stairs – types – layout and planning- Elevators – types – terminology – passenger, service and goods elevators – handling capacity - arrangement and positioning of lifts – Escalators – features –use of ramps	10	20%
	VI	failures in RCC and Steel structures, Failure due to Fire, Wind and Earthquakes. Foundation failure – failures by alteration, improper maintenance, overloading.	10	20%

QUESTION PAPER PATTERN (End semester examination):

Maximum Marks :100 Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note: 1. Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE206	FLUID MECHANICS -II	3-0-0-3	2016

Prerequisite : CE203 Fluid Mechanics I

Course objectives

- To study the Basic principles and laws governing fluid flow to open channel flow including hydraulic jump & gradually varied flow.
- To understand basic modeling laws in fluid mechanics and dimensional analysis.
- To apply the fundamental theories of fluid mechanics for the analysis and design of hydraulic machines

Syllabus

Hydraulic machines, Turbines, Pumps, Open channel flow, uniform flow, Hydraulic Jump, Gradually varied flow, Dimensional analysis and model testing.

Expected Outcome

The students will

- i. become capable of analysing open channel flows & designing open channels.
- ii. get an insight into the working of hydraulic machines.
- iii. become capable of studying advanced topics such as design of hydraulic structures.

Text Books:

- 1. Kumar D.S., Fluid Mechanics and Fluid power Engineering, S. K. Kataria & Sons, New Delhi, 2013
- 2. Modi P. N. and S. M. Seth, Hydraulics and Fluid Mechanics (Including Hydraulic Machines), Standard Book House, New Delhi, 2013.
- 3. Narayana Pillai, N. Principles of Fluid Mechanics and Fluid Machines, University Press, 2011.

References:

- 1. Arora.K.R. Fluid Mechanics, Hydraulics and Hydraulic Machines, Standard Publishers, 2005.
- 2. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2010.
- 3. C S P Ojha, P N Chandramouli and R Brendtsson, Fluid Mechanics and Machinery, Oxford University Press, India, New Delhi
- 4. Hanif Choudhary, Open channel flow, Prentice Hall, 2010
- 5. Jain A. K., Fluid Mechanics, Khanna Publishers, Delhi, 1996.
- 6. Subramanya K., Open Channel Hydraulics, Tata McGraw Hill, 2009.
- 7. Ven Te Chow, Open channel Hydraulics, 2009.

COURSE PLAN

Module	Contents	Hours	Sem. Exam Marks
I	Hydraulic Machines - Impulse momentum principle, impact of jets, force of a jet on fixed and moving vanes. Turbines- classification and comparison of velocity triangles for Pelton wheel and reaction turbines (Francis and Kaplan), work done and efficiency, specific speed, draft tube- different types, penstock, surge tank - types, cavitation in turbines (Concepts only).	7	15%

II	Pumps- classification of pumps - Centrifugal pumps- types, work done, efficiency, minimum speed, velocity triangle for pumps, specific speed, priming, limitation of suction lift, net positive suction head, cavitation in centrifugal pump (Concepts only).		7	15%
	FIRST INTERNAL EXAMINATION			•
III	Introduction: Open channel flow and its relevance in Civil Engineering, Comparison of open channel flow and pipe flow. Flow in open channels-types of channels, types of flow, geometric elements of channel section, velocity distribution in open channels, uniform flow in channels, Chezy's equation, Kutter's and Manning's formula, Most economic section for rectangular and trapezoidal channels. Condition for maximum discharge and maximum velocity through circular channels, computations for uniform flow, normal depth, conveyance of a channel section, section factor for uniform flow.	Λ L	6	15%
IV	Specific energy, critical depth, discharge diagram, Computation of critical flow, Section factor for critical flow. Specific force, conjugate or sequent depths, hydraulic jump, expression for sequent depths and energy loss for a hydraulic jump in horizontal rectangular channels, types of jump, length of jump, height of jump, uses of hydraulic jump.		6	15%
	SECOND INTERNAL EXAMINATION			
V	Gradually varied flow - dynamic equation for gradually varied flow, different forms of dynamic equation, Approximation for a wide rectangular channel, classification of surface profiles, Backwater and drawdown curves, characteristics of surface profiles in prismatic (Rectangular and trapezoidal only). Computation of length of surface profiles, direct step method. Design of lined open channels: trapezoidal cross-sections only		8	20%
VI	Dimensional analysis and model studies - dimensions, dimensional homogeneity, methods of dimensional analysis, Rayleigh method, Buckingham method, dimensionless numbers, Similitude - geometric, kinematic and dynamic similarities. Model laws - Reynold's and Froude model laws, scale ratios, types of models, Concepts of distorted and undistorted models.		8	20%
	END SEMESTER EXAMINATION			

QUESTION PAPER PATTERN (End semester examination):

Maximum Marks :100 Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note: 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction	
CE208	GEOTECHNICAL ENGINEERING I	3-0-0 -3	2016	

Prerequisite : CE 205 Engineering Geology

Course objectives:

- To impart to the fundamentals of Soil Mechanics principles;
- To provide knowledge about the basic, index and engineering properties of soils.

Syllabus:

Major soil deposits of India, Basic soil properties, Relationship between basic soil properties, Index properties-Sieve analysis, Hydrometer analysis, Atterberg Limits and Relative density, Soil classification, Permeability of soils, Principle of effective stress, Quick sand condition, Critical hydraulic gradient, Shear strength of soils, Mohr-Coulomb failure criterion, Different types of shear tests, Liquefaction of soils, Compressibility and Consolidation, Void ratio versus pressure relationship, Normally consolidated, under consolidated and over consolidated states, Estimation of magnitude of settlement, Terzaghi's theory of one-dimensional consolidation, Coefficient of consolidation, Stability of finite slopes, Swedish Circle Method- Friction circle method ,use of Stability, Compaction of soils, light and heavy compaction tests, Control of compaction

Expected Outcomes:

The students will be able to

- i. understand the basic principles governing soil behavior.
- ii. understand the procedure, applicability and limitations of various soil testing methods.

Text Books:

- 1. Das B. M., Principles of Geotechnical Engineering, Cengage India Pvt. Ltd., 2010.
- 2. Ranjan G. and A. S. R. Rao, Basic and Applied Soil Mechanics, New Age International, 2002.

201

- 1. A V Narasimha Rao and C Venkatramaiah, Numerical Problems, Examples and Objective questions in Geotechnical Engineering, Universities Press (India) Ltd., 2000
- 2. Arora K. R., Geotechnical Engineering, Standard Publishers, 2006.
- 3. Purushothamaraj P., Soil Mechanics and Foundation Engineering, Dorling Kindersley(India) Pvt. Ltd., 2013
- 4. Taylor D.W., Fundamentals of Soil Mechanics, Asia Publishing House, 1948.
- 5. Terzaghi K. and R. B. Peck, Soil Mechanics in Engineering Practice, John Wiley, 1967.
- 6. Venkatramaiah, Geotechnical Engg, Universities Press, 2000.

	COURSE PLAN		
Module	Contents	Hours	Sem. Exam Marks
I	Introduction to soil mechanics -Major soil deposits of India Basic soil properties - Void ratio, porosity, degree of saturation, air content, percentage air voids, moisture content, specific gravity, unit weight - Relationship between basic soil properties - Sensitivity - Thixotropy - numerical problems	6	15%
II	Index properties - Sieve analysis – Well graded, poorly graded and gap graded soils - Stoke's law - Hydrometer analysis (no derivation required for percentage finer and diameter) - numerical problems – Relative density Consistency-Atterberg Limits - Practical Applications - numerical problems I.S. classification of soils.	6	15%
	FIRST INTERNAL EXAMINATION		
III	Permeability of soils - Darcy's law - Factors affecting permeability - Practical Applications - Constant head and falling head permeability tests - Average permeability of stratified deposits (no derivation required) - numerical problems. Principle of effective stress - Total, neutral and effective stress variation diagrams - Quick sand condition - Critical hydraulic gradient - numerical problems— Definition of phreatic line	7	15%
IV	Shear strength of soils- Practical Applications - Mohr-Coulomb failure criterion — Mohr circle method for determination of principal planes and stresses- numerical problems — relationship between shear parameters and principal stresses [no derivation required] Brief discussion of direct shear test, tri-axial compression test, vane shear test and unconfined compression test — Applicability - numerical problems -UU and CD tests [Brief discussion only]	7	15%
	SECOND INTERNAL EXAMINATION		
V	Compressibility and Consolidation - Void ratio versus pressure relationship - Coefficient of compressibility and volume compressibility - Compression index Practical Applications - Change in void ratio method - Height of solids method - Normally consolidated, under consolidated and over consolidated states - Estimation of pre consolidation pressure - Practical Applications - Estimation of magnitude of settlement of normally consolidated clays - Numerical problems Terzaghi's theory of one-dimensional consolidation(no derivation required) - average degree of consolidation - Time	8	20%

	factor - Coefficient of consolidation - Practical Applications - Square root of time and logarithm of time fitting methods - Numerical problems			
VI	Stability of finite slopes - Toe failure, base failure, slip failure - Swedish Circle Method- Friction circle method- Factor of safety with respect to cohesion and angle of internal friction - Stability number - Stability charts. Compaction of soils - Standard Proctor, Modified Proctor, I.S. light & Heavy Compaction Tests - OMC - Zero Air voids line - Control of compaction - numerical problems	8	20	
END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN (End semester examination):

Maximum Marks :100 Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note: 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course code	Course Name	L-T-P - Credits	Year of
			Introduction
HS200	Business Economics	3-0-0-3	2016
D			

Course Objectives

- To familiarize the prospective engineers with elementary Principles of Economics and Business Economics.
- To acquaint the students with tools and techniques that are useful in their profession in Business Decision Making which will enhance their employability;
- To apply business analysis to the "firm" under different market conditions;
- To apply economic models to examine current economic scenario and evaluate policy options for addressing economic issues
- To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
- To prepare and analyse various business tools like balance sheet, cost benefit analysis and rate of returns at an elementary level

Syllabus

Business Economics - basic concepts, tools and analysis, scarcity and choices , resource allocation, marginal analysis, opportunity costs and production possibility curve. Fundamentals of microeconomics - Demand and Supply Analysis, equilibrium, elasticity, production and production function, cost analysis, break-even analysis and markets. Basics of macroeconomics - the circular flow models, national income analysis, inflation, trade cycles, money and credit, and monetary policy. Business decisions - investment analysis, Capital Budgeting decisions, forecasting techniques and elementary Balance Sheet and taxation, business financing, international investments

Expected outcome.

A student who has undergone this course would be able to

- i. make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
- ii. able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
- iii. gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
- iv. gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet

Text Books

- 1. Geetika, Piyali Ghosh and Chodhury, Managerial Economics, Tata McGraw Hill, 2015
- 2. Gregory Mankiw, *Principles of Macroeconomics*, Cengage Learning, 2006.
- 3. M.Kasi Reddy and S.Saraswathi, *Economics and Financial Accounting*. Prentice Hall of India. New Delhi.

- 1. Dornbusch, Fischer and Startz, *Macroeconomics*, McGraw Hill, 11th edition, 2010.
- 2. Khan M Y, *Indian Financial System*, Tata McGraw Hill, 7th edition, 2011.
- 3. Samuelson, Managerial Economics, 6th edition, Wiley
- 4. Snyder C and Nicholson W, *Fundamentals of Microeconomics*, Cengage Learning (India), 2010.
- 5. Truett, Managerial Economics: Analysis, Problems, Cases, 8th Edition, Wiley
- 6. Welch, *Economics: Theory and Practice* 7th Edition, Wiley
- 7. Uma Kapila, Indian Economy Since Independence, 26th Edition: A Comprehensive and Critical Analysis of India's Economy, 1947-2015
- 8. C Rangarajan, *Indian Economy, Essays on monetary and finance*, UBS Publishers' Distributors, 1998
- 9. A.Ramachandra Aryasri, *Managerial Economics and Financial Analysis*, Tata McGraw-Hill, New Delhi.
- 10. Dominick Salvatore, *Managerial Economics in Global Economy*, Thomas Western College Publishing, Singapore.
- 11. I.M .Pandey, Financial Management, Vikas Publishing House. New Delhi.
- 12. Dominick Salvatore, *Theory and Problems of Micro Economic Theory*. Tata Mac Graw-Hill, New Delhi.
- 13. T.N.Hajela. Money, Banking and Public Finance. Anne Books. New Delhi.
- 14. G.S.Gupta. Macro Economics-Theory and Applications. Tata Mac Graw-Hill, New Delhi.
- 15. Yogesh, Maheswari, Management Economics, PHI learning, NewDelhi, 2012
- 16. Timothy Taylor, *Principles of Economics*, 3rdedition, TEXTBOOK MEDIA.
- 17. Varshney and Maheshwari. Managerial Economics. Sultan Chand. New Delhi

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Business Economics and its role in managerial decision making-meaning-scope-relevance-economic problems-scarcity Vs choice (2 Hrs)-Basic concepts in economics-scarcity, choice, resource allocation- Trade-off-opportunity cost-marginal analysis- marginal utility theory, Law of diminishing marginal utility -production possibility curve (2 Hrs)	4	15%
Ш	Basics of Micro Economics I Demand and Supply analysis-equilibrium-elasticity (demand and supply) (3 Hrs.) -Production concepts-average product-marginal product-law of variable proportions- Production function-Cobb Douglas function-problems (3 Hrs.)	6	15%
	FIRST INTERNAL EXAMINATION		
III	Basics of Micro Economics II Concept of costs-marginal, average, fixed, variable costs-cost curves-shut down point-long run and short run (3 Hrs.)- Break Even Analysis-Problem-Markets-Perfect Competition, Monopoly and Monopolistic Competition, Oligopoly-Cartel and collusion (3 Hrs.).	6	15%
IV	Basics of Macro Economics - Circular flow of income-two sector and multi-sector models- National Income Concepts-Measurement methods-problems-Inflation, deflation (4 Hrs.)-Trade cycles-Money-stock and flow concept-Quantity theory of money-Fischer's Equation and Cambridge Equation -velocity of circulation of money-credit control methods-SLR, CRR, Open Market Operations-Repo and Reverse Repo rate-emerging concepts in money-bit coin (4 Hrs.).	8	15%

	SECOND INTERNAL EXAMINATION			
	Business Decisions I-Investment analysis-Capital Budgeting-NPV,		20%	
\mathbf{V}	IRR, Profitability Index, ARR, Payback Period (5 Hrs.)- Business			
•	decisions under certainty-uncertainty-selection of alternatives-risk	9		
	and sensitivity- cost benefit analysis-resource management (4 Hrs.).			
	Business Decisions II Balance sheet preparation-principles and		20%	
	interpretation-forecasting techniques (7 Hrs.)-business financing-			
VI	sources of capital- Capital and money markets-international	9		
	financing-FDI, FPI, FII-Basic Principles of taxation-direct tax,			
	indirect tax-GST (2 hrs.).	M		
	END SEMESTER EXAM			

Question Paper Pattern

Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE232	MATERIAL TESTING LAB -I	0-0-3-1	2016

Prerequisite: CE201 Mechanics of Solids

Course objectives:

The experimental work involved in this laboratory should make the student understand the fundamental modes of loading of the structures and also make measurements of loads, displacements and strains. Relating these quantities, the student should be able to obtain the strength of the material and stiffness properties of structural elements.

Course Outcomes:

The students will be able to undertake the testing of materials when subjected to different types of loading.

List of Experiments: (10 Experiments mandatory)

- 1. Tension test on Structural Materials: Mild Steel and Tor steel (HYSD bars) (Universal Testing machine and suitable extensometer)
- 2. Shear test on mild steel rod (Compression Testing Machine and Shear Shackle)
- 3. Bending test on mild steel (I sections) (Universal Testing Machine)
- 4. Torsion test on Mild steel circular bars (Torsion Testing Machine)
- 5. Torsion test on Steel/Copper/ Aluminum wires
 - a. Using Torsion Pendulum with Central disk
 - b. Using Torsion Pendulum with distributed Mass
- 6. Impact test
 - a. Izod test (Impact Testing Machine)
 - b. Charpy test (Impact Testing Machine)
- 7. Hardness test
 - a. Brinell Hardness test (Brinnel Hardenss Testing Machine)
 - b. Rockwell Hardness test (Rockwell Hardness Testing Machine)
 - c. Vickers Hardness test (Vickers Hardness Testing Machine)
- 8. Test On Springs
 - a. Open coil (Spring Testing Machine)
 - b. Close coil (Spring Testing Machine)
- 9. Bending Test on Timber (Universal Testing Machine and dial Gauge)
- 10. Bend & Rebend test on M S Rods
- 11. Verification of Clerk Maxwells Theorem 114
- 12. Demonstration of Fatigue Test
- 13. Study/demonstration of Strain Gauges and load cells

Books/Manuals /References:-

- 1. Testing of Engineering Materials by George E Troxell, Harmer E Davis, G Hauck, McGraw-Hill, Newyork
- 2. Testing of Metallic Materials by Prof. A V K Suryanaraya, Prentice Hall, India, Pvt Ltd.
- 3. Mechanical Behavior of Materials, by N Dowling, Prentice Hall, 1993.

Internal Continuous Evaluation - 100 marks

Record/output (Average) - 60 marks Viva-voce (Average) - 10 marks

Final practical exam -30 marks

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE234	FLUID MECHANICS LABORATORY	0-0-3-1	2016

Prerequisite: CE203 Fluid Mechanics- I

Course objectives

1. Students should be able to verify the principles studied in theory by performing the experiments in laboratory

Expected Outcome

- 1. The students will be able to understand the different flow measurement equipment's and their procedures.
- 2. The students will be able to analyze the performance characteristics pumps/turbines.
- 3. Able to develop the skill of experimentation techniques for the study of flow phenomena in channels/pipes.

List of Experiments (Minimum 12 nos. mandatory)

- 1. Study of taps, valves, pipe fittings, gauges, pitot tubes, water meters and current meters.
- 2. Calibration of Pressure gauges
- 3. Determination of metacentric height and radius of gyration of floating bodies.
- 4. Verification of Bernoulli's theorem
- 5. Hydraulic coefficients of orifices and mouth pieces under constant head method and time of emptying method.
- 6. Calibration of Venturimeter.
- 7. Calibration of Orifice meter
- 8. Calibration of water meter.
- 9. Calibration of rectangular and triangular notches.
- 10. Time of Emptying: unsteady flow
- 11. Determination of Darcy's and Chezy's constant for pipe flow.
- 12. Determination of Chezy's constant and Manning's number for open channel flow.
- 13. Plotting Specific Energy Curves in Open Channel flow
- 14. Study of Parameters of Hydraulic Jump in Open channel Flow.
- 15. Determination of friction co-efficient in pipes
- 16. Determination of loss co-efficient for pipe fittings

- 17. Performance characteristics of centrifugal pump.
- 18. Performance characteristics of Pelton wheel.
- 19. Performance characteristics of Francis turbine.
- 20. Performance characteristics of Kaplan turbine.

Internal Continuous Evaluation - 100 marks Record/output (Average) - 60 marks Viva-voce (Average) - 10 marks Final practical exam -30 marks

Esto

2014